首页> 外文期刊>INFORMS journal on computing >A Theoretical Framework for Learning Tumor Dose-Response Uncertainty in Individualized Spatiobiologically Integrated Radiotherapy
【24h】

A Theoretical Framework for Learning Tumor Dose-Response Uncertainty in Individualized Spatiobiologically Integrated Radiotherapy

机译:学习肿瘤剂量 - 响应不确定度的理论框架,在纯种型常规放射治疗中

获取原文
获取原文并翻译 | 示例

摘要

Recent theoretical research has employed the linear-quadratic model of dose-response in stochastic control formulations for spatiobiologically integrated radiotherapy. The goal is to maximize the expected tumor kill while limiting the biologically effective dose administered to nearby organs at risk under tolerable limits. This is attempted by adapting fluence maps to the uncertain evolution of tumor-cell densities observed in functional images acquired at the beginning of each treatment session. One limitation of this research is that the treatment planner is assumed to know the probability distribution of a crucial dose-response parameter in the linear-quadratic model. This paper proposes a Bayesian stochastic control framework to relax this assumption. An algorithm rooted in certainty-equivalent control is devised to simultaneously learn this probability distribution while adapting fluence maps based on dose-response data collected from functional images over the treatment course. This algorithm's performance is compared via numerical simulations with two other solution procedures that are also rooted in certainty equivalent control. The first one is a clairvoyant method. This assumes that the treatment planner knows the probability distribution, and hence serves as an idealized gold standard. The other one uses a fixed value of the dose-response parameter as available from the literature, and hence provides a natural benchmark without learning. The tumor kill achieved by the learning algorithm is statistically indistinguishable from the clairvoyant approach, whereas it can be about 20% higher than the no-learning benchmark. Both these conclusions bode well for individualized spatiobiologically integrated radiotherapy using functional images, at least in theory.
机译:最近的理论研究采用了在季后学整合放疗的随机控制配方中的线性二次模型。目标是最大限度地提高预期的肿瘤杀戮,同时限制了在可抵御局限度下施用到附近器官的生物有效剂量。这是通过适应在每个治疗会议开始时所获得的功能图像中观察到的肿瘤细胞密度的不确定演变来尝试这一点。该研究的一个限制是假设治疗计划者知道线性二次模型中的关键剂量响应参数的概率分布。本文提出了贝叶斯随机控制框架,以放宽这种假设。设计了一种确定性等效控制的算法,以同时学习这种概率分布,同时根据从治疗过程中的功能图像收集的剂量响应数据来调整注量地图。该算法的性能通过具有另外两个解决方案程序的数值模拟比较,该方法也扎根于确定性等效控制。第一个是透视方法。这假设治疗计划者知道概率分布,因此用作理想化的金标准。另一个使用从文献中获得的剂量响应参数的固定值,因此在不学习的情况下提供自然基准。学习算法实现的肿瘤杀死与透视方法有统计学难以区分,而它可以比无学习基准更高约20%。这两个结论都是在理论上使用功能图像的个性化的季节性血管生物学上整合放疗。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号