首页> 外文期刊>Information Processing & Management >Irony detection via sentiment-based transfer learning
【24h】

Irony detection via sentiment-based transfer learning

机译:通过基于情绪的转移学习的讽刺检测

获取原文
获取原文并翻译 | 示例

摘要

Irony as a literary technique is widely used in online texts such as Twitter posts. Accurate irony detection is crucial for tasks such as effective sentiment analysis. A text's ironic intent is defined by its context incongruity. For example in the phrase "I love being ignored", the irony is defined by the incongruity between the positive word "love" and the negative context of "being ignored". Existing studies mostly formulate irony detection as a standard supervised learning text categorization task, relying on explicit expressions for detecting context incongruity. In this paper we formulate irony detection instead as a transfer learning task where supervised learning on irony labeled text is enriched with knowledge transferred from external sentiment analysis resources. Importantly, we focus on identifying the hidden, implicit incongruity without relying on explicit incongruity expressions, as in "I like to think of myself as a broken down Justin Bieber my philosophy professor." We propose three transfer learning-based approaches to using sentiment knowledge to improve the attention mechanism of recurrent neural models for capturing hidden patterns for incongruity. Our main findings are: (1) Using sentiment knowledge from external resources is a very effective approach to improving irony detection; (2) For detecting implicit incongruity, transferring deep sentiment features seems to be the most effective way. Experiments show that our proposed models outperform state-of-the-art neural models for irony detection.
机译:作为文学技术的讽刺广泛地用于在线文本,如Twitter Posts。准确的讽刺检测对于有效情感分析等任务至关重要。文本的讽刺意图由其上下文不协调定义。例如,在“我喜欢被忽视”短语中,讽刺由积极词“爱”和“被忽视”的负面情境之间的不协调来定义。现有研究大多标志着讽刺检测作为标准的监督学习文本分类任务,依赖于明确的表达式来检测上下文不协调。在本文中,我们制定了讽刺检测,而是作为转移学习任务,在讽刺的讽刺文本上进行监督学习,这些任务是从外部情感分析资源转移的知识。重要的是,我们专注于识别隐藏的隐含不协调而不依赖于明确的不协调表达,如“我喜欢自己认为自己是一个破碎的贾斯汀,我的哲学教授。”我们提出了三次基于学习的学习方法来利用情感知识来改善复发性神经模型的注意机制,以捕获隐藏模式以获取不协调的隐藏模式。我们的主要研究结果是:(1)利用外部资源的情感知识是一种非常有效的改善讽刺检测方法; (2)为了检测隐式肉不协调,转移深刻的情感特征似乎是最有效的方式。实验表明,我们所提出的模型优于最先进的神经模型,用于讽刺检测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号