首页> 外文期刊>IEEE transactions on industrial informatics >A Customer Churn Prediction Model in Telecom Industry Using Boosting
【24h】

A Customer Churn Prediction Model in Telecom Industry Using Boosting

机译:使用Boosting的电信行业客户流失预测模型

获取原文
获取原文并翻译 | 示例

摘要

With the rapid growth of digital systems and associated information technologies, there is an emerging trend in the global economy to build digital customer relationship management (CRM) systems. This trend is more obvious in the telecommunications industry, where companies become increasingly digitalized. Customer churn prediction is a main feature of in modern telecomcommunication CRM systems. This research conducts a real-world study on customer churn prediction and proposes the use of boosting to enhance a customer churn prediction model. Unlike most research that uses boosting as a method to boost the accuracy of a given basis learner, this paper tries to separate customers into two clusters based on the weight assigned by the boosting algorithm. As a result, a higher risk customer cluster has been identified. Logistic regression is used in this research as a basis learner, and a churn prediction model is built on each cluster, respectively. The result is compared with a single logistic regression model. Experimental evaluation reveals that boosting also provides a good separation of churn data; thus, boosting is suggested for churn prediction analysis.
机译:随着数字系统和相关信息技术的迅速发展,全球经济中出现了建立数字客户关系管理(CRM)系统的趋势。在电信行业,公司变得越来越数字化的情况下,这种趋势更加明显。客户流失预测是现代电信CRM系统的主要特征。这项研究对客户流失预测进行了现实世界的研究,并提出了使用提升来增强客户流失预测模型的方法。与大多数使用提升作为提高给定基础学习者的准确性的方法的研究不同,本文尝试根据提升算法分配的权重将客户分为两个集群。结果,确定了较高风险的客户群。在本研究中,使用逻辑回归作为基础学习者,并且在每个聚类上分别构建了流失预测模型。将结果与单个逻辑回归模型进行比较。实验评估表明,增强处理还可以很好地分离客户流失数据。因此,建议对流失预测进行分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号