首页> 外文期刊>IEEE transactions on industrial informatics >Geometry-Supervised Pose Network for Accurate Retail Shelf Pose Estimation
【24h】

Geometry-Supervised Pose Network for Accurate Retail Shelf Pose Estimation

机译:用于准确零售货架姿势估计的几何监督姿势网络

获取原文
获取原文并翻译 | 示例

摘要

In the smart retail industry, the quality of image collection is known to heavily affect the final analysis results (like accuracy) of applications, such as commodity detection, identification, and stitching. In practice, images captured manually by a monocular camera like mobile phone contain many low-quality images caused by an irregular shoot step. After image collection, filtering out low-quality images is a key step to mitigate the aforementioned impacts. One of the most effective solutions is to filter images with huge off-angles in 3-D through the shelf pose estimation algorithm. However, most of the existing camera pose estimation algorithms are designed for natural scenes and are difficult to realize in the structured real target scenes (like shelf scenes). Meanwhile, due to the lack of shelf pose dataset in academia and industry, there is still no approach designed for the shelf pose estimation in the smart retail scenario. In this article, we try to regress the complete shelf pose within a single end-to-end network and propose a novel geometry-supervised pose network (GSPN), which supervises the shelf pose estimation by learning the intrinsically geometric properties of shelves. Furthermore, we introduce the first retail shelf pose dataset (RSPD), including 28 876 images selected from three different shelf categories and being annotated carefully, as well as a complete 3-D shelf posture. The whole networks can be trained end to end with the shelf images and well-annotated ground truth. Experiments result of five strategies show that GSPN achieves the state-of-the-art performance on RSPD.
机译:在智能零售业中,已知图像集合的质量严重影响应用的最终分析结果(如精度),例如商品检测,识别和缝合。在实践中,手动捕获的单像相机如手机手动捕获的图像包含由不规则拍摄步骤引起的许多低质量图像。在图像集合之后,过滤出低质量的图像是减轻上述影响的关键步骤。最有效的解决方案之一是通过货架姿势估计算法在3-D中过滤具有巨大偏离角的图像。然而,大多数现有的相机姿势估计算法都是为自然场景而设计的,并且很难在结构化的真实目标场景中实现(如货架场景)。同时,由于学术界和工业中缺乏货架姿势数据集,仍然没有智能零售场景中的货架姿态估算设计。在本文中,我们尝试在单端网络内的完整货架上姿势进行回归,并提出一种新的几何监督姿势网络(GSPN),其通过学习货架的本质上几何特性来监督货架姿势估计。此外,我们介绍了第一个零售货架姿势数据集(RSPD),其中包括从三个不同的货架类别中选择的28个876个图像,并仔细注释,以及完整的3-D架姿势。整个网络可以训练结束,以架子图像和注释的地面真相结束。五项策略的实验结果表明,GSPN在RSPD上实现了最先进的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号