首页> 外文期刊>Image and Vision Computing >Triangulate geometric constraint combined with visual-flow fusion network for accurate 6DoF pose estimation
【24h】

Triangulate geometric constraint combined with visual-flow fusion network for accurate 6DoF pose estimation

机译:三角形几何约束与视觉流融合网络相结合,用于精确的6dof姿势估计

获取原文
获取原文并翻译 | 示例

摘要

Estimating the 6D object pose based on a monocular RGB image is a challenging task in computer vision, which produces false positives under the influence of occlusion or cluttered environments. In addition, the prediction of translation is affected by changes of the image size. In this work, we present a novel two-stage method TGCPose6D for robust 6DoF object pose estimation which is composed of 2D keypoint detection and translation refinement. In the first stage, the 2D keypoint regression space is constrained by triangulate geometric feature vectors, and the low-quality prediction is suppressed by the center-heatmap weighted loss function, thereby the performance of keypoint detection is significantly improved. In the second stage, the Visual-Flow Fusion network (VFFNet) is used to extract the visual feature and optical flow feature of the rendered image and the observed image, and to predict the relative translation based on the difference of features. Specifically, the VFFNet is trained iteratively to gain the ability to predict the relative translation deviation. Extensive experiments are conducted to demonstrate the effectiveness of the proposed TGCPose6D method. Our overall pose estimation pipeline outperforms state-of-the-art object pose estimation methods on several benchmarks.(c) 2021 Elsevier B.V. All rights reserved.
机译:估计基于单眼RGB图像的6D对象姿势是计算机视觉中的一个具有挑战性的任务,它在闭塞或杂乱环境的影响下产生了假阳性。此外,翻译的预测受图像尺寸的变化的影响。在这项工作中,我们提出了一种新颖的两阶段方法TGCose6D,用于鲁棒6dof对象姿势估计,由2D关键点检测和翻译细化组成。在第一阶段中,2D关键点回归空间由三角形几何特征向量约束,并且由中心热示例加权损耗函数抑制了低质量预测,从而显着提高了关键点检测的性能。在第二阶段,视觉流融合网络(VFFNET)用于提取渲染图像和观察图像的视觉特征和光学流特征,并基于特征的差异来预测相对转换。具体地,VFFNET迭代地训练以获得预测相对转换偏差的能力。进行广泛的实验以证明所提出的TGCOPT6D方法的有效性。我们的整体姿势估计管道优于几个基准上的最先进的对象介绍方法。(c)2021 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Image and Vision Computing》 |2021年第4期|104127.1-104127.11|共11页
  • 作者单位

    Beijing Inst Technol Sch Mechatron Engn Beijing Peoples R China|Adv Innovat Ctr Intelligent Robots & Syst Beijing Peoples R China|Key Lab Biomimet Robots & Syst Chinese Minist Edu Beijing Peoples R China;

    Beijing Inst Technol Sch Mechatron Engn Beijing Peoples R China|Adv Innovat Ctr Intelligent Robots & Syst Beijing Peoples R China|Key Lab Biomimet Robots & Syst Chinese Minist Edu Beijing Peoples R China;

    Beijing Inst Technol Sch Mechatron Engn Beijing Peoples R China|Adv Innovat Ctr Intelligent Robots & Syst Beijing Peoples R China|Key Lab Biomimet Robots & Syst Chinese Minist Edu Beijing Peoples R China;

    Beijing Inst Technol Sch Mechatron Engn Beijing Peoples R China|Adv Innovat Ctr Intelligent Robots & Syst Beijing Peoples R China|Key Lab Biomimet Robots & Syst Chinese Minist Edu Beijing Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    6D object pose estimation; Iterative translation refinement; Triangulate geometric constraint; Visual-flow feature fusion;

    机译:6D对象姿态估计;迭代翻译改进;三角形几何约束;视觉流动特征融合;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号