首页> 外文期刊>Neurocomputing >Pose guided structured region ensemble network for cascaded hand pose estimation
【24h】

Pose guided structured region ensemble network for cascaded hand pose estimation

机译:姿势引导结构区域集合网络级联手姿势估算

获取原文
获取原文并翻译 | 示例

摘要

Hand pose estimation from single depth images is an essential topic in computer vision and human computer interaction. Despite recent advancements in this area promoted by convolutional neural networks, accurate hand pose estimation is still a challenging problem. In this paper we propose a novel approach named as pose guided structured region ensemble network (Pose-REN) to boost the performance of hand pose estimation. Under the guidance of an initially estimated pose, the proposed method extracts regions from the feature maps of convolutional neural network and generates more optimal and representative features for hand pose estimation. The extracted feature regions are then integrated hierarchically according to the topology of hand joints by tree-structured fully connections to regress the refined hand pose. The final hand pose is obtained by an iterative cascaded method. Comprehensive experiments on public hand pose datasets demonstrate that our proposed method outperforms state-of-the-art algorithms. (C) 2019 Elsevier B.V. All rights reserved.
机译:单一深度图像的手姿势估计是计算机视觉和人机交互中的重要主题。尽管在卷积神经网络促进的这一领域最近推进了升级,但准确的手姿势估计仍然是一个具有挑战性的问题。在本文中,我们提出了一种名为Pose引导结构区域集合网络(POSE-REN)的新方法,以提高手姿势估计的性能。在初始估计的姿势的指导下,所提出的方法从卷积神经网络的特征图中提取区域,并为手姿势估计产生更优化和代表特征。然后通过树结构的完全连接,根据手关节的拓扑结构进行分层地集成了提取的特征区域,以回归精制的手姿势。最后的手姿势通过迭代级联方法获得。公共手姿势数据集的综合实验表明,我们所提出的方法优于最先进的算法。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号