首页> 外文期刊>Image and Vision Computing >Dense convolutional feature histograms for robust visual object tracking
【24h】

Dense convolutional feature histograms for robust visual object tracking

机译:用于强大的Visual对象跟踪的密集卷积特征直方图

获取原文
获取原文并翻译 | 示例

摘要

Despite recent breakthroughs in the field, Visual Object Tracking remains an open and challenging task in Computer Vision. Modern applications require trackers to not only be accurate but also very last, even on embedded systems. In this work, we use features from Convolutional Neural Networks to build histograms, which are more adept at handling appearance variations, in an end-to-end trainable architecture. To deal with the internal covariate shift that occurs when extracting histograms from convolutional features as well as to incorporate informations from the multiple levels of the neural hierarchy, we propose and use a novel densely connected architecture where histograms from multiple layers are concatenated to produce the final representation. Experimental results validate our hypotheses on the benefits of using histograms as opposed to standard convolutional features, as the proposed histogram-based tracker surpasses recently proposed sophisticated trackers on multiple benchmarks. Long-term tracking results also reaffirm the usefulness of the proposed tracker in more challenging scenarios, where appearance variations are more severe and traditional trackers fail. (C) 2020 Elsevier B.V. All rights reserved.
机译:尽管最近在该领域突破,但可视化对象跟踪仍然是计算机视觉中的开放和具有挑战性的任务。即使在嵌入式系统中,现代应用程序要求跟踪器不仅准确,而且非常最后一次。在这项工作中,我们使用来自卷积神经网络的特征来构建直方图,该直方图在端到端可训练的架构中更擅长处理外观变化。要处理从卷积特征中提取直方图时发生的内部协变量,我们提出并使用新的密集连接架构,其中来自多个层的直方图被连接以产生最终表示。实验结果验证了我们对使用直方图而不是标准卷积特征的益处的假设,因为所提出的基于直方图的跟踪器在多个基准上最近提出了复杂的追踪器。长期跟踪结果还重申拟议的跟踪器在更具挑战性方案中的有用性,外观变化更严重,传统的跟踪器失败。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号