首页> 外文期刊>Mathematical Problems in Engineering >Convolutional Shallow Features for Performance Improvement of Histogram of Oriented Gradients in Visual Object Tracking
【24h】

Convolutional Shallow Features for Performance Improvement of Histogram of Oriented Gradients in Visual Object Tracking

机译:卷积浅层特征在视觉对象跟踪中改善梯度梯度直方图的性能

获取原文
获取原文并翻译 | 示例

摘要

Histogram of oriented gradients (HOG) is a feature descriptor typically used for object detection. For object tracking, this feature has certain drawbacks when the target object is influenced by a change in motion or size. In this paper, the use of convolutional shallow features is proposed to improve the performance of HOG feature-based object tracking. Because the proposed method works based on a correlation filter, the response maps for each feature are summed in order to obtain the final response map. The location of the target object is then predicted based on the maximum value of the optimized final response map. Further, a model update is used to overcome the change in appearance of the target object during tracking. A performance evaluation of the proposed method is obtained by using Visual Object Tracking 2015 (VOT2015) benchmark dataset and its protocols. The results are then provided based on their accuracy-robustness (AR) rank. Furthermore, through a comparison with several state-of-the-art tracking algorithms, the proposed method was shown to achieve the highest rank in terms of accuracy and a third rank for robustness. In addition, the proposed method significantly improves the robustness of HOG-based features.
机译:定向梯度直方图(HOG)是通常用于物体检测的特征描述符。对于对象跟踪,当目标对象受到运动或大小变化的影响时,此功能具有某些缺点。在本文中,提出了使用卷积浅层特征来提高基于HOG特征的目标跟踪的性能。由于所提出的方法基于相关滤波器,因此将每个特征的响应图相加以获得最终响应图。然后,基于优化的最终响应图的最大值来预测目标对象的位置。此外,模型更新用于克服跟踪过程中目标对象外观的变化。通过使用Visual Object Tracking 2015(VOT2015)基准数据集及其协议获得对所提出方法的性能评估。然后根据其准确性-稳健性(AR)等级提供结果。此外,通过与几种最新的跟踪算法进行比较,该方法在准确性方面表现出最高等级,在鲁棒性方面排名第三。此外,该方法大大提高了基于HOG的特征的鲁棒性。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2017年第12期|6329864.1-6329864.9|共9页
  • 作者单位

    Pusan Natl Univ, Dept Elect & Comp Engn, Busan, South Korea;

    Pusan Natl Univ, Dept Elect & Comp Engn, Busan, South Korea;

    Pusan Natl Univ, Dept Elect & Comp Engn, Busan, South Korea;

    Pusan Natl Univ, Dept Elect & Comp Engn, Busan, South Korea;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号