首页> 外文期刊>Image and Vision Computing >Generalized ellipsoids and anisotropic filtering for segmentation improvement in 3D medical imaging
【24h】

Generalized ellipsoids and anisotropic filtering for segmentation improvement in 3D medical imaging

机译:广义椭球和各向异性滤波可改善3D医学成像的分割

获取原文
获取原文并翻译 | 示例

摘要

Deformable models have demonstrated to be very useful techniques for image segmentation. However, they present several weak points. Two of the main problems with deformable models are the following: (1) results are often dependent on the initial model location, and (2) the generation of image potentials is very sensitive to noise. Modeling and preprocessing methods presented in this paper contribute to solve these problems. We propose an initialization tool to obtain a good approximation to global shape and location of a given object into a 3D image. We also introduce a novel technique for corner preserving anisotropic diffusion filtering to improve contrast and corner measures. This is useful for both guiding initialization (global shape) and subsequent deformation for fine tuning (local shape).
机译:变形模型已经证明是非常有用的图像分割技术。但是,它们存在几个弱点。变形模型的两个主要问题如下:(1)结果通常取决于初始模型的位置,(2)图像电势的生成对噪声非常敏感。本文提出的建模和预处理方法有助于解决这些问题。我们提出了一种初始化工具,可以很好地逼近3D图像中给定对象的整体形状和位置。我们还介绍了一种用于保留角的各向异性扩散过滤的新技术,以改善对比度和角测量。这对于引导初始化(整体形状)和后续变形以进行微调(局部形状)都是很有用的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号