首页> 外文期刊>IEEE transactions on visualization and computer graphics >Fast evolution of image manifolds and application to filtering and segmentation in 3D medical images
【24h】

Fast evolution of image manifolds and application to filtering and segmentation in 3D medical images

机译:图像流形的快速发展及其在3D医学图像中的滤波和分割中的应用

获取原文
获取原文并翻译 | 示例

摘要

In many instances, numerical integration of space-scale PDEs is the most time consuming operation of image processing. This is because the scale step is limited by conditional stability of explicit schemes. We introduce the unconditionally stable semiimplicit linearized difference scheme that is fashioned after additive operator split (AOS) [Weickert, J. et al. (1998)], [Goldenberg, R et al., (2001)] for Beltrami and the subjective surface computation. The Beltrami flow [Kimmel, R. (1997) (1999)], [Sochen, N. et al. (1998)], is one of the most effective denoising algorithms in image processing. For gray-level images, we show that the flow equation can be arranged in an advection-diffusion form, revealing the edge-enhancing properties of this flow. This also suggests the application of AOS method for faster convergence. The subjective surface [Sarti, A. et al. (2002)] deals with constructing a perceptually meaningful interpretation from partial image data by mimicking the human visual system. However, initialization of the surface is critical for the final result and its main drawbacks are very slow convergence and the huge number of iterations required. We first show that the governing equation for the subjective surface flow can be rearranged in an AOS implementation, providing a near real-time solution to the shape completion problem in 2D and 3D. Then, we devise a new initialization paradigm where we first "condition" the viewpoint surface using the fast-marching algorithm. We compare the original method with our new algorithm on several examples of real 3D medical images, thus revealing the improvement achieved.
机译:在许多情况下,空间比例PDE的数值积分是图像处理中最耗时的操作。这是因为缩放步骤受显式方案的条件稳定性限制。我们介绍了无条件稳定的半隐式线性化差分方案,该方案是在加法运算符拆分(AOS)之后形成的[Weickert,J.等。 (1998)],[Goldenberg,R等,(2001)]进行Beltrami和主观曲面计算。 Beltrami流[Kimmel,R.(1997)(1999)],[Sochen,N.等人。 (1998)],是图像处理中最有效的降噪算法之一。对于灰度图像,我们显示出流动方程可以以对流扩散形式排列,从而揭示了该流动的边缘增强特性。这也暗示了AOS方法在更快收敛方面的应用。主观表面[Sarti,A。等。 (2002)]通过模仿人类的视觉系统,从部分图像数据中构造出一种在感知上有意义的解释。但是,表面的初始化对于最终结果至关重要,其主要缺点是收敛速度非常慢,并且需要进行大量迭代。我们首先显示,可以在AOS实现中重新安排主观表面流的控制方程,从而为2D和3D中的形状完成问题提供近乎实时的解决方案。然后,设计一种新的初始化范例,在该范例中,我们首先使用快速行进算法对视点表面进行“条件化”。我们在真实3D医学图像的几个示例上将原始方法与新算法进行了比较,从而揭示了所取得的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号