首页> 外文期刊>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences >Training Data Selection Method for Generalization by Multilayer Neural Networks
【24h】

Training Data Selection Method for Generalization by Multilayer Neural Networks

机译:多层神经网络的训练数据选择方法

获取原文
获取原文并翻译 | 示例

摘要

A training data selection method is proposed for multilayer neural networks (MLNNs). This method selects a small number of the training data, which guarantee both gen- eralization and fast training of the MLNNs applied to pattern classification. The generalization will be satisfied using the data locate close to the boundary of the pattern classes. However, if these data are only used in the training, convergence is slow. This phenomenon is analyzed in this paper. Therefore, in the proposed method, the MLNN is first trained using some number of the data, which are randomly selected (Step 1).
机译:提出了一种用于多层神经网络的训练数据选择方法。这种方法选择了少量的训练数据,这保证了应用于模式分类的MLNN的生成和快速训练。使用位于模式类别边界附近的数据可以满足一般化要求。但是,如果仅在训练中使用这些数据,则收敛速度会很慢。本文分析了这种现象。因此,在提出的方法中,首先使用一些随机选择的数据训练MLNN(步骤1)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号