首页> 外文OA文献 >A selective learning method to improve the generalization of multilayer feedforward neural networks.
【2h】

A selective learning method to improve the generalization of multilayer feedforward neural networks.

机译:一种改进多层前馈神经网络推广的选择性学习方法。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Multilayer feedforward neural networks with backpropagation algorithm have been used successfully in many applications. However, the level of generalization is heavily dependent on the quality of the training data. That is, some of the training patterns can be redundant or irrelevant. It has been shown that with careful dynamic selection of training patterns, better generalization performance may be obtained. Nevertheless, generalization is carried out independently of the novel patterns to be approximated. In this paper, we present a learning method that automatically selects the training patterns more appropriate to the new sample to be predicted. This training method follows a lazy learning strategy, in the sense that it builds approximations centered around the novel sample. The proposed method has been applied to three different domains: two artificial approximation problems and a real time series prediction problem. Results have been compared to standard backpropagation using the complete training data set and the new method shows better generalization abilities.
机译:具有反向传播算法的多层前馈神经网络已在许多应用中成功使用。但是,泛化程度在很大程度上取决于训练数据的质量。也就是说,某些训练模式可能是多余的,也可能是无关的。已经表明,通过谨慎地动态选择训练模式,可以获得更好的泛化性能。但是,概化是独立于要近似的新颖模式进行的。在本文中,我们提出了一种学习方法,该方法可以自动选择更适合于要预测的新样本的训练模式。这种训练方法遵循懒惰的学习策略,从某种意义上说,它建立了围绕新样本的近似值。所提出的方法已经应用于三个不同的领域:两个人工逼近问题和实时序列预测问题。使用完整的训练数据集将结果与标准反向传播进行了比较,新方法显示了更好的泛化能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号