首页> 外文期刊>IEEE transactions on visualization and computer graphics >Motion Sickness Prediction in Stereoscopic Videos using 3D Convolutional Neural Networks
【24h】

Motion Sickness Prediction in Stereoscopic Videos using 3D Convolutional Neural Networks

机译:使用3D卷积神经网络预测立体视频中的晕动病

获取原文
获取原文并翻译 | 示例

摘要

In this paper. we propose a three-dimensional (3D) convolutional neural network (CNN)-based method for predicting the degree of motion sickness induced by a 360 degrees stereoscopic video. We consider the user's eye movement as a new feature, in addition to the motion velocity and depth features of a video used in previous work. For this purpose, we use saliency. optical flow, and disparity maps of an input video, which represent eye movement. velocity, and depth, respectively, as the input of the 3D CNN. To train our machine-learning model, we extend the dataset established in the previous work using two data augmentation techniques: frame shifting and pixel shifting. Consequently, our model can predict the degree of motion sickness more precisely than the previous method, and the results have a more similar correlation to the distribution of ground-truth sickness.
机译:在本文中。我们提出了一种基于三维(3D)卷积神经网络(CNN)的方法来预测360度立体视频引起的晕车程度。除了先前工作中使用的视频的运动速度和深度功能之外,我们还将用户的眼睛运动视为一项新功能。为此,我们使用显着性。表示眼动的输入视频的光流和视差图。速度和深度分别作为3D CNN的输入。为了训练我们的机器学习模型,我们使用两种数据增强技术扩展了先前工作中建立的数据集:帧移位和像素移位。因此,我们的模型可以比以前的方法更准确地预测运动病的程度,并且结果与地面疾病的分布具有更相似的相关性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号