首页> 外文期刊>IEEE transactions on visualization and computer graphics >Motion Sickness Prediction in Stereoscopic Videos using 3D Convolutional Neural Networks
【24h】

Motion Sickness Prediction in Stereoscopic Videos using 3D Convolutional Neural Networks

机译:使用3D卷积神经网络的立体视频中的运动疾病预测

获取原文
获取原文并翻译 | 示例

摘要

In this paper. we propose a three-dimensional (3D) convolutional neural network (CNN)-based method for predicting the degree of motion sickness induced by a 360 degrees stereoscopic video. We consider the user's eye movement as a new feature, in addition to the motion velocity and depth features of a video used in previous work. For this purpose, we use saliency. optical flow, and disparity maps of an input video, which represent eye movement. velocity, and depth, respectively, as the input of the 3D CNN. To train our machine-learning model, we extend the dataset established in the previous work using two data augmentation techniques: frame shifting and pixel shifting. Consequently, our model can predict the degree of motion sickness more precisely than the previous method, and the results have a more similar correlation to the distribution of ground-truth sickness.
机译:在本文中。我们提出了一种三维(3D)卷积神经网络(CNN),用于预测360度立体视频诱导的运动疾病程度的方法。除了以前工作中使用的视频的运动速度和深度特征,我们将用户的眼睛运动视为一个新功能。为此目的,我们使用显着性。输入视频的光学流程和差异图,其代表眼睛运动。速度,以及深度,分别为3D CNN的输入。要培训我们的机器学习模型,我们使用两个数据增强技术扩展了以前的工作中建立的数据集:帧移位和像素移位。因此,我们的模型可以比以前的方法更精确地预测运动疾病程度,结果与地面真理疾病的分布具有更类似的相关性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号