首页> 外文期刊>IEEE Transactions on Image Processing >Deep3DSaliency: Deep Stereoscopic Video Saliency Detection Model by 3D Convolutional Networks
【24h】

Deep3DSaliency: Deep Stereoscopic Video Saliency Detection Model by 3D Convolutional Networks

机译:Deep3DSaliency:基于3D卷积网络的深度立体视频显着性检测模型

获取原文
获取原文并翻译 | 示例

摘要

Stereoscopic saliency detection plays an important role in various stereoscopic video processing applications. However, conventional stereoscopic video saliency detection methods mainly use independent low-level features instead of extracting them automatically, and thus, they ignore the intrinsic relationship between the spatial and temporal information. In this paper, we propose a novel stereoscopic video saliency detection method based on 3D convolutional neural networks, namely, deep 3D video saliency (Deep3DSaliency). The proposed network consists of two sub-models: spatiotemporal saliency model (STSM) and stereoscopic saliency aware model (SSAM). STSM directly takes three consecutive video frames as the input to extract visual spatiotemporal features, while SSAM attempts to further infer the depth and semantic features from the left and right video frames by shared parameters from STSM. The visual spatiotemporal features from STSM and the depth and semantic features from SSAM are learned by an alternating optimization scheme. Finally, all these saliency-related features are combined together for the final stereoscopic saliency detection via 3D deconvolution. Experimental results show the superior performance of the proposed model over other existing ones in saliency estimation for 3D video sequences.
机译:立体显着性检测在各种立体视频处理应用中起着重要作用。然而,常规的立体视频显着性检测方法主要使用独立的低级特征而不是自动提取它们,因此,它们忽略了空间和时间信息之间的固有关系。在本文中,我们提出了一种基于3D卷积神经网络的新型立体视频显着性检测方法,即深度3D视频显着性(Deep3DSaliency)。拟议的网络由两个子模型组成:时空显着性模型(STSM)和立体显着性感知模型(SSAM)。 STSM直接将三个连续的视频帧作为输入以提取视觉时空特征,而SSAM尝试通过来自STSM的共享参数进一步推断左右视频帧的深度和语义特征。通过交替优化方案来学习来自STSM的视觉时空特征以及来自SSAM的深度和语义特征。最后,将所有这些与显着性相关的功能组合在一起,以通过3D反卷积进行最终的立体显着性检测。实验结果表明,该模型在3D视频序列的显着性估计方面优于其他模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号