首页> 外文期刊>Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on >Approximate Optimal Control Design for Nonlinear One-Dimensional Parabolic PDE Systems Using Empirical Eigenfunctions and Neural Network
【24h】

Approximate Optimal Control Design for Nonlinear One-Dimensional Parabolic PDE Systems Using Empirical Eigenfunctions and Neural Network

机译:基于经验特征函数和神经网络的非线性一维抛物线PDE系统的近似最优控制设计

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses the approximate optimal control problem for a class of parabolic partial differential equation (PDE) systems with nonlinear spatial differential operators. An approximate optimal control design method is proposed on the basis of the empirical eigenfunctions (EEFs) and neural network (NN). First, based on the data collected from the PDE system, the Karhunen–Loève decomposition is used to compute the EEFs. With those EEFs, the PDE system is formulated as a high-order ordinary differential equation (ODE) system. To further reduce its dimension, the singular perturbation (SP) technique is employed to derive a reduced-order model (ROM), which can accurately describe the dominant dynamics of the PDE system. Second, the Hamilton–Jacobi–Bellman (HJB) method is applied to synthesize an optimal controller based on the ROM, where the closed-loop asymptotic stability of the high-order ODE system can be guaranteed by the SP theory. By dividing the optimal control law into two parts, the linear part is obtained by solving an algebraic Riccati equation, and a new type of HJB-like equation is derived for designing the nonlinear part. Third, a control update strategy based on successive approximation is proposed to solve the HJB-like equation, and its convergence is proved. Furthermore, an NN approach is used to approximate the cost function. Finally, we apply the developed approximate optimal control method to a diffusion–reaction process with a nonlinear spatial operator, and the simulation results illustrate its effectiveness.
机译:本文针对一类具有非线性空间微分算子的抛物型偏微分方程(PDE)系统,解决了近似最优控制问题。基于经验特征函数(EEF)和神经网络(NN),提出了一种近似的最优控制设计方法。首先,根据从PDE系统收集的数据,将Karhunen-Loève分解用于计算EEF。利用这些EEF,将PDE系统公式化为高阶常微分方程(ODE)系统。为了进一步减小其尺寸,采用奇异摄动(SP)技术来推导降阶模型(ROM),该模型可以准确地描述PDE系统的主导动力学。其次,采用汉密尔顿-雅各比-贝尔曼(HJB)方法合成基于ROM的最优控制器,其中SP理论可保证高阶ODE系统的闭环渐近稳定性。将最优控制律分为两部分,通过求解代数Riccati方程得到线性部分,并推导了一种新型的HJB-like方程来设计非线性部分。第三,提出了一种基于逐次逼近的控制更新策略来求解类HJB方程,并证明了其收敛性。此外,使用NN方法来近似成本函数。最后,我们将开发的近似最优控制方法应用于带有非线性空间算子的扩散反应过程,仿真结果证明了其有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号