首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Predictive control of uncertain nonlinear parabolic PDE systems using a Galerkineural-network-based model
【24h】

Predictive control of uncertain nonlinear parabolic PDE systems using a Galerkineural-network-based model

机译:基于Galerkin /神经网络模型的不确定非线性抛物线PDE系统的预测控制

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a model predictive control (MPC) scheme for a class of parabolic partial differential equation (PDE) systems with unknown nonlinearities, arising in the context of transport-reaction processes, is proposed. A spatial operator of a parabolic PDE system is characterized by a spectrum that can be partitioned into a finite slow and an infinite fast complement. In this view, first, Galerkin method is used to derive a set of finite dimensional slow ordinary differential equation (ODE) system that captures the dominant dynamics of the initial PDE system. Then, a Multilayer Neural Network (MNN) is employed to parameterize the unknown nonlinearities in the resulting finite dimensional ODE model. Finally, a Galerkineural-network-based ODE model is used to predict future states in the MPC algorithm. The proposed controller is applied to stabilize an unstable steady-state of the temperature profile of a catalytic rod subject to input and state constraints.
机译:本文提出了一种在运输反应过程中产生的非线性未知的抛物型偏微分方程(PDE)系统的模型预测控制(MPC)方案。抛物线PDE系统的空间算子的特征是可以划分为有限慢和无限快补的频谱。在这种观点下,首先,使用Galerkin方法导出一组有限维的慢速常微分方程(ODE)系统,该系统捕获了初始PDE系统的主导动力学。然后,使用多层神经网络(MNN)对所得有限维ODE模型中的未知非线性进行参数化。最后,基于Galerkin /神经网络的ODE模型用于预测MPC算法中的未来状态。所提出的控制器用于稳定受输入和状态约束的催化棒温度曲线的不稳定稳态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号