首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Neural Network-Based Finite Horizon Stochastic Optimal Control Design for Nonlinear Networked Control Systems
【24h】

Neural Network-Based Finite Horizon Stochastic Optimal Control Design for Nonlinear Networked Control Systems

机译:非线性网络控制系统的基于神经网络的有限水平随机最优控制设计

获取原文
获取原文并翻译 | 示例

摘要

The stochastic optimal control of nonlinear networked control systems (NNCSs) using neuro-dynamic programming (NDP) over a finite time horizon is a challenging problem due to terminal constraints, system uncertainties, and unknown network imperfections, such as network-induced delays and packet losses. Since the traditional iteration or time-based infinite horizon NDP schemes are unsuitable for NNCS with terminal constraints, a novel time-based NDP scheme is developed to solve finite horizon optimal control of NNCS by mitigating the above-mentioned challenges. First, an online neural network (NN) identifier is introduced to approximate the control coefficient matrix that is subsequently utilized in conjunction with the critic and actor NNs to determine a time-based stochastic optimal control input over finite horizon in a forward-in-time and online manner. Eventually, Lyapunov theory is used to show that all closed-loop signals and NN weights are uniformly ultimately bounded with ultimate bounds being a function of initial conditions and final time. Moreover, the approximated control input converges close to optimal value within finite time. The simulation results are included to show the effectiveness of the proposed scheme.
机译:由于终端约束,系统不确定性和未知的网络缺陷(例如网络引起的延迟和数据包),在有限的时间范围内使用神经动力学编程(NDP)对非线性网络控制系统(NNCS)进行随机最优控制是一个具有挑战性的问题损失。由于传统的迭代或基于时间的无限视野NDP方案不适用于具有终端约束的NNCS,因此开发了一种新颖的基于时间的NDP方案,以通过缓解上述挑战来解决NNCS的有限视野最优控制。首先,引入在线神经网络(NN)标识符以近似控制系数矩阵,随后将其与评论者和演员NN结合使用,以确定在有限时间范围内在时间上向前的基于时间的随机最优控制输入和在线方式。最终,使用李雅普诺夫理论证明了所有闭环信号和神经网络权重最终均一地受到限制,而终局界限是初始条件和终局时间的函数。此外,近似控制输入在有限时间内收敛至最佳值。仿真结果包括在内,以证明所提方案的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号