首页> 外文期刊>Neurocomputing >Neural network-based finite-time control of quantized stochastic nonlinear systems
【24h】

Neural network-based finite-time control of quantized stochastic nonlinear systems

机译:基于神经网络的随机非线性系统的有限时间控制

获取原文
获取原文并翻译 | 示例

摘要

The finite-time tracking control of a class of stochastic quantized nonlinear systems is thought about in this article. Different from the studies on conventional finite-time control of stochastic systems, the quantized control problem is first taken into account and the nonlinear terms may be completely unknown. The quantization error and unknown nonlinearities make the existing finite-time stability criterion unavailable. By adopting the approximation ability of neural network, a novel adaptive neural control strategy is proposed, which removes the linear growth condition assumption for nonlinearities in existing finite-time studies. To be convenient for finite-time stability analysis of stochastic nonlinear systems, an important finite time stability criterion in integral form is first set up. Then, combining Jessen's inequality and the proposed finite-time stability criterion, the finite-time mean square stability of stochastic nonlinear system is proved. (C) 2019 Elsevier B.V. All rights reserved.
机译:本文考虑了一类随机量化非线性系统的有限时间跟踪控制。与传统的随机系统有限时间控制研究不同,首先考虑了量化控制问题,非线性项可能是完全未知的。量化误差和未知的非线性使现有的有限时间稳定性标准不可用。通过利用神经网络的逼近能力,提出了一种新的自适应神经控制策略,该策略消除了现有有限时间研究中非线性的线性增长条件假设。为了方便随机非线性系统的有限时间稳定性分析,首先建立了一个重要的积分形式的有限时间稳定性准则。然后,结合Jessen不等式和所提出的有限时间稳定性准则,证明了随机非线性系统的有限时间均方稳定性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号