首页> 外文期刊>IEEE Transactions on Systems, Man, and Cybernetics >Adaptive Neural Tracking Control for an Uncertain State Constrained Robotic Manipulator With Unknown Time-Varying Delays
【24h】

Adaptive Neural Tracking Control for an Uncertain State Constrained Robotic Manipulator With Unknown Time-Varying Delays

机译:具有不确定时变时滞的不确定状态约束机器人的自适应神经跟踪控制

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an adaptive neural control strategy for an n-link rigid robotic manipulator with both state constraints and unknown time-varying delayed states. The design difficulties cause by the state constraints and unknown network-induced time-varying delays which appear in the n-link rigid robot simultaneously. In order to overcome these difficulties, the novel Barrier Lyapunov functions and an iterative backstepping technique are employed to guarantee constraint satisfaction of the position of the robot, the opportune Lyapunov-Krasovskii functionals and separation techniques are utilized to eliminate the effect of unknown functions with time-varying delayed states in communication channels. As the universal approximator, the neural networks are used to estimate the unknown functions of systems. By using the Lyapunov analysis, we can achieve that all the closed-loop signals are semiglobal uniformly ultimately bound, the tracking errors converge to a small set about zero and the good tracking performances of the system output. The feasibility of the proposed control algorithm can be demonstrated by providing simulation results.
机译:本文提出了一种具有状态约束和未知时变时滞状态的n链接刚性机器人机械手的自适应神经控制策略。设计困难是由状态约束和未知的网络引起的时变延迟引起的,这些延迟同时出现在n链接刚性机器人中。为了克服这些困难,采用新颖的屏障李雅普诺夫函数和迭代反推技术来保证对机器人位置的约束满足,利用适当的李雅普诺夫-卡拉索夫斯基函数和分离技术消除了未知函数随时间的影响改变通信通道中的延迟状态。作为通用逼近器,神经网络用于估计系统的未知函数。通过使用Lyapunov分析,我们可以实现所有闭环信号最终均是半全局统一约束的,跟踪误差收敛到约零的小集合,并且系统输出具有良好的跟踪性能。通过提供仿真结果可以证明所提出的控制算法的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号