首页> 外文期刊>Mechanical systems and signal processing >Neural adaptive tracking control for an uncertain robot manipulator with time-varying joint space constraints
【24h】

Neural adaptive tracking control for an uncertain robot manipulator with time-varying joint space constraints

机译:具有时变关节空间约束的不确定机器人的神经自适应跟踪控制

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a control design for a robotic manipulator with uncertainties in both actuator dynamics and manipulator dynamics subject to asymmetric time-varying joint space constraints. Tangent-type time-varying barrier Lyapunov functionals (tvBLFs) are constructed to ensure no constraint violation and to remove the need for transforming the original constrained system into an equivalent unconstrained one. Adaptive Neural Networks (NNs) are proposed to handle uncertainties in manipulator dynamics and actuator dynamics in addition to the unknown disturbances. Proper input saturation is employed, and it is proved that under the proposed method the stability and semi-global uniform ultimate boundedness of the closed-loop system can be achieved without violation of constraints. The effectiveness of the theoretical developments is verified through numerical simulations.
机译:本文提出了一种机器人机械手的控制设计,该机械手在执行器动力学和机械手动力学方面都存在不确定性,并且受到不对称时变关节空间约束。切线类型时变势垒Lyapunov函数(tvBLF)的构造可确保不违反约束,并且无需将原始约束系统转换为等效的无约束系统。提出了自适应神经网络(NNs)来处理除未知干扰之外的机械手动力学和执行器动力学方面的不确定性。采用了适当的输入饱和度,并证明了该方法在不违反约束条件的情况下,可以实现闭环系统的稳定性和半全局一致极限极限。通过数值模拟验证了理论发展的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号