首页> 外文期刊>IEEE Transactions on Signal Processing >Adaptive Global Time Sequence Averaging Method Using Dynamic Time Warping
【24h】

Adaptive Global Time Sequence Averaging Method Using Dynamic Time Warping

机译:使用动态时间翘曲的自适应全局时间序列平均方法

获取原文
获取原文并翻译 | 示例

摘要

Time sequence averaging under dynamic time warping (DTW) is a non-trivial problem, and its exact solution requires unrealistic computational complexity in practice. The DTW barycenter averaging (DBA) method is one of the most effective iterative approximation solutions to date. However, there are still a few drawbacks in the DBA method. First, the length of the resulting average sequence depends on the selected initial average sequence; second, the discrepancy distance between the resulting average sequence and target sequence set is highly sensitive to the initialization, as we have demonstrated through the experiments described here. In this study, we propose an adaptive DBA (ADBA) algorithm to address these drawbacks. We define a scaling coefficient based on the DTW alignments such that the temporal aberrations between the average sequence and target sequence set can be qualitatively captured. The algorithm is realized by an iterative process. For each iteration, the temporary average sequence and target sequence set are partitioned into several aligned subsequence sets according to the variation in the signs of the scaling coefficients. Then, these partitioned average subsequences are adaptively compressed or stretched such that the average discrepancy distance and overall temporal aberration can be locally minimized. The comparison experiments carried out on the standard datasets illustrate that the proposed algorithm achieves lower average discrepancy distance, overall temporal aberration, and higher robustness than the available methods. Additionally, the proposed algorithm is verified by an accelerometer-based hand gesture recognitionsystem, where ADBA produces more effective gesture templates.
机译:在动态时间翘曲(DTW)下的时间序列是一个非琐碎的问题,其确切的解决方案在实践中需要不切实际的计算复杂性。 DTW BaryCenter平均(DBA)方法是迄今最有效的迭代近似解之一。但是,DBA方法中仍有一些缺点。首先,所得平均序列的长度取决于所选的初始平均序列;其次,所得到的平均序列和目标序列组之间的差异距离对初始化非常敏感,因为我们通过这里描述的实验证明。在本研究中,我们提出了一种自适应DBA(ADBA)算法来解决这些缺点。我们基于DTW对准定义缩放系数,使得可以定性地捕获平均序列和目标序列集之间的时间像差。该算法通过迭代过程实现。对于每个迭代,根据缩放系数的符号的变化,临时平均序列和目标序列集被划分为几个对齐的子序列集。然后,这些分区的平均子序列被自适应地压缩或拉伸,使得平均差异距离和总时间像差可以局部地最小化。在标准数据集上执行的比较实验说明了所提出的算法实现了比可用方法更低的平均差异距离,总时间像差和更高的鲁棒性。此外,所提出的算法由基于加速度计的手势识别系统验证,其中Adba产生更有效的手势模板。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号