首页> 外文期刊>IEEE Transactions on Signal Processing >Gridless Line Spectrum Estimation and Low-Rank Toeplitz Matrix Compression Using Structured Samplers: A Regularization-Free Approach
【24h】

Gridless Line Spectrum Estimation and Low-Rank Toeplitz Matrix Compression Using Structured Samplers: A Regularization-Free Approach

机译:使用结构化采样器的无网格线谱估计和低秩Toeplitz矩阵压缩:无正则化方法

获取原文
获取原文并翻译 | 示例

摘要

This paper considers the problem of compressively sampling wide sense stationary random vectors with a low rank Toeplitz covariance matrix. Certain families of structured deterministic samplers are shown to efficiently compress a high-dimensional Toeplitz matrix of size N×N , producing a compressed sketch of size O(r√)×O(r√).The reconstruction problem can be cast as that of line spectrum estimation, whereby, in absence of noise, Toeplitz matrices of any size N can be exactly recovered from compressive sketches of size O(r√)×O(r√), no matter how large N is. In the presence of noise and finite data, the line spectrum estimation algorithm is combined with a novel denoising technique that only exploits a positive semidefinite (PSD) Toeplitz constraint to denoise the compressed sketch using a simple least-squares minimization framework. A major advantage of the algorithm is that it does not require any regularization parameter. It also enjoys lower computational complexity owing to its ability to predict the unobserved entries of the low-rank Toeplitz matrix. Explicit bounds on the reconstruction error are established and it is shown that the PSD constraint on the denoiser is sufficient to ensure stable reconstruction from a sketch of size O(r√)×O(r√). Extensive simulations demonstrate that the proposed algorithm provides better performance over random samplers and algorithms that use nuclear-norm-based regularizers.
机译:本文考虑了使用低秩Toeplitz协方差矩阵对广义固定平稳向量进行压缩采样的问题。某些结构化确定性采样器系列可有效压缩N×N的高维Toeplitz矩阵,生成O(r√)×O(r√)大小的压缩草图。线谱估计,从而在没有噪声的情况下,无论N有多大,都可以从大小为O(r√)×O(r√)的压缩草图中准确恢复任何大小N的Toeplitz矩阵。在存在噪声和有限数据的情况下,线谱估计算法与一种新颖的降噪技术相结合,该技术仅利用正半定(PSD)Toeplitz约束使用简单的最小二乘最小化框架对压缩草图进行降噪。该算法的主要优点是它不需要任何正则化参数。由于它具有预测低秩Toeplitz矩阵未观察到的条目的能力,因此它还具有较低的计算复杂度。建立了重构误差的显式边界,从大小O(r√)×O(r√)的草图可以看出,去噪器上的PSD约束足以确保稳定的重构。大量的仿真表明,与使用基于核范数的正则化器的随机采样器和算法相比,该算法可提供更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号