首页> 外文期刊>IEEE signal processing letters >MELT—Maximum-Likelihood Estimation of Low-Rank Toeplitz Covariance Matrix
【24h】

MELT—Maximum-Likelihood Estimation of Low-Rank Toeplitz Covariance Matrix

机译:MELT-低秩Toeplitz协方差矩阵的最大似然估计

获取原文
获取原文并翻译 | 示例

摘要

In this letter, we develop a low-complexity algorithm named maximum-likelihood estimation of low-rank Toeplitz covariance matrix (MELT) to solve the maximum-likelihood estimation of a low-rank Toeplitz covariance matrix. Our derivation of MELT is based on the technique of majorization-minimization (MM), in which we design and optimize a novel tight upper-bound function. MELT is an iterative algorithm, and its each iterative step is a closed-form update, which can be implemented efficiently by fast Fourier transforms. As MELT is based on MM, it enjoys nice properties such as monotonicity and guaranteed convergence to a stationary point. Finally, we numerically show that the performance of MELT is much better than some of the algorithms currently available in the literature.
机译:在这封信中,我们开发了一种称为低秩Toeplitz协方差矩阵(MELT)的最大似然估计的低复杂度算法,以解决低秩Toeplitz协方差矩阵的最大似然估计。我们对MELT的推导基于最大化最小化(MM)技术,在该技术中,我们设计和优化了一种新颖的紧上限函数。 MELT是一种迭代算法,其每个迭代步骤都是闭式更新,可以通过快速傅立叶变换有效地实现。由于MELT基于MM,因此它具有不错的属性,例如单调性和保证收敛到固定点。最后,我们从数字上显示MELT的性能比文献中当前可用的某些算法好得多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号