首页> 外文学位 >Compressed sensing, sparse approximation, and low-rank matrix estimation.
【24h】

Compressed sensing, sparse approximation, and low-rank matrix estimation.

机译:压缩感测,稀疏近似和低秩矩阵估计。

获取原文
获取原文并翻译 | 示例

摘要

The importance of sparse signal structures has been recognized in a plethora of applications ranging from medical imaging to group disease testing to radar technology. It has been shown in practice that various signals of interest may be (approximately) sparsely modeled, and that sparse modeling is often beneficial, or even indispensable to signal recovery. Alongside an increase in applications, a rich theory of sparse and compressible signal recovery has recently been developed under the names compressed sensing (CS) and sparse approximation (SA). This revolutionary research has demonstrated that many signals can be recovered from severely undersampled measurements by taking advantage of their inherent low-dimensional structure. More recently, an offshoot of CS and SA has been a focus of research on other low-dimensional signal structures such as matrices of low rank. Low-rank matrix recovery (LRMR) is demonstrating a rapidly growing array of important applications such as quantum state tomography, triangulation from incomplete distance measurements, recommender systems (e.g., the Netflix problem), and system identification and control.;In this dissertation, we examine CS, SA, and LRMR from a theoretical perspective. We consider a variety of different measurement and signal models, both random and deterministic, and mainly ask two questions. How many measurements are necessary? How large is the recovery error? We give theoretical lower bounds for both of these questions, including oracle and minimax lower bounds for the error. However, the main emphasis of the thesis is to demonstrate the efficacy of convex optimization---in particular l1 and nuclear-norm minimization based programs---in CS, SA, and LRMR. We derive upper bounds for the number of measurements required and the error derived by convex optimization, which in many cases match the lower bounds up to constant or logarithmic factors. The majority of these results do not require the restricted isometry property (RIP), a ubiquitous condition in the literature.
机译:稀疏信号结构的重要性已在从医学成像到团体疾病测试再到雷达技术等众多应用中得到认可。在实践中已经表明,可以(近似)稀疏地对各种感兴趣的信号建模,并且稀疏模型通常是有益的,甚至对于信号恢复来说是必不可少的。除了应用的增加以外,最近还以压缩感知(CS)和稀疏近似(SA)的名义开发了丰富的稀疏和可压缩信号恢复理论。这项革命性的研究表明,利用信号固有的低维结构,可以从严重欠采样的测量中恢复许多信号。最近,CS和SA的分支已经成为其他低维信号结构(例如低秩矩阵)的研究重点。低秩矩阵恢复(LRMR)展示了一系列快速增长的重要应用,例如量子状态层析成像,不完全距离测量的三角测量,推荐系统(例如Netflix问题)以及系统识别和控制。我们从理论角度检查CS,SA和LRMR。我们考虑随机和确定性的各种不同的测量和信号模型,主要提出两个问题。需要多少次测量?恢复错误有多大?我们为这两个问题都给出了理论下界,包括误差的oracle和minimax下界。然而,本文的主要重点是要证明在CS,SA和LRMR中凸优化(尤其是基于l1和基于核规范最小化的程序)的有效性。我们得出所需测量次数的上限,以及由凸优化得出的误差,在很多情况下,这些误差将下限与常数或对数因子匹配。这些结果中的大多数不需要受限的等距特性(RIP),这是文献中普遍存在的条件。

著录项

  • 作者

    Plan, Yaniv.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Applied Mathematics.;Mathematics.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 171 p.
  • 总页数 171
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号