首页> 外文期刊>Robotics, IEEE Transactions on >Optimal Path Following for Differentially Flat Robotic Systems Through a Geometric Problem Formulation
【24h】

Optimal Path Following for Differentially Flat Robotic Systems Through a Geometric Problem Formulation

机译:通过几何问题公式化的差分平面机器人系统的最优路径跟踪

获取原文
获取原文并翻译 | 示例

摘要

Path following deals with the problem of following a geometric path with no predefined timing information and constitutes an important step in solving the motion-planning problem. For differentially flat systems, it has been shown that the projection of the dynamics along the geometric path onto a linear single-input system leads to a small dimensional optimal control problem. Although the projection simplifies the problem to great extent, the resulting problem remains difficult to solve, in particular in the case of nonlinear system dynamics and time-optimal problems. This paper proposes a nonlinear change of variables, using a time transformation, to arrive at a fixed end-time optimal control problem. Numerical simulations on a robotic manipulator and a quadrotor reveal that the proposed problem formulation is solved efficiently without requiring an accurate initial guess.
机译:路径跟踪解决了在没有预定义的时序信息的情况下遵循几何路径的问题,并构成了解决运动计划问题的重要步骤。对于差动平面系统,已经证明动力学沿着几何路径投影到线性单输入系统上会导致小尺寸的最优控制问题。尽管投影在很大程度上简化了问题,但所产生的问题仍然难以解决,尤其是在非线性系统动力学和时间最优问题的情况下。本文提出了一种非线性的变量变化,通过时间变换来达到固定的结束时间最优控制问题。在机器人操纵器和四旋翼飞机上进行的数值模拟表明,所提出的问题公式可以有效地解决,而无需进行准确的初始猜测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号