首页> 外文学位 >On the Time-optimal Trajectory Planning along Predetermined Geometric Paths and Optimal Control Synthesis for Trajectory Tracking of Robot Manipulators.
【24h】

On the Time-optimal Trajectory Planning along Predetermined Geometric Paths and Optimal Control Synthesis for Trajectory Tracking of Robot Manipulators.

机译:基于预定几何路径的时间最优轨迹规划与机器人操纵轨迹的最优控制综合。

获取原文
获取原文并翻译 | 示例

摘要

In this dissertation, we study two important subjects in robotics: (i) time-optimal trajectory planning, and (ii) optimal control synthesis methodologies for trajectory tracking. In the first subject, we concentrate on a rather specific sub-class of problems, the time-optimal trajectory planning along predetermined geometric paths. In this kind of problem, a purely geometric path is already known, and the task is to find out how to move along this path in the shortest time physically possible. In order to generate the true fastest solutions achievable by the actual robot manipulator, the complete nonlinear dynamic model should be incorporated into the problem formulation as a constraint that must be satisfied by the generated trajectories and feedforward torques. This important problem was studied in the 1980s, with many related methods for addressing it based on the so-called velocity limit curve and variational methods. Modern formulations directly discretize the problem and obtain a large-scale mathematical optimization problem, which is a prominent approach to tackle optimal control problems that has gained popularity over variational methods, mainly because it allows to obtain numerical solutions for harder problems.;We contribute to the referred problem of time-optimal trajectory planning, by extending and improving the existing mathematical optimization formulations. We successfully incorporate the complete nonlinear dynamic model, including viscous friction because for the fastest motions it becomes even more significant than Coulomb friction; of course, Coulomb friction is likewise accommodated for in our formulation. We develop a framework that guarantees exact dynamic feasibility of the generated time-optimal trajectories and feedforward torques. Our initial formulation is carefully crafted in a rather specific manner, so that it allows to naturally propose a convex relaxation that solves exactly the original problem formulation, which is non-convex and therefore hard to solve. In order to numerically solve the proposed formulation, a discretization scheme is also developed. The final formulation generates near time-optimal trajectories and feedforward torques with traveling times that are slightly larger than those of pure time-optimal solutions. Nevertheless, the detrimental effects induced by pure time-optimality are eliminated. Experimental results on a 6-axis industrial manipulator confirm that our formulation generates the fastest solutions that can actually be implemented in the real robot manipulator.;Following the work done on near time-optimal trajectories, we explore two controller synthesis methodologies for trajectory tracking, which are more suitable to achieve trajectory-tracking under such fast trajectories. In the first approach, we approximate the discrete-time nonlinear dynamics of robot manipulators, moving along the state-reference trajectory, as an affine time-varying (ATV) dynamical system in discrete-time. Therefore, the problem of trajectory tracking for robot manipulators is posed as a linear quadratic (LQ) optimal control problem for a class of discrete-time ATV dynamical systems. Then, an ATV control law to achieve trajectory tracking on the ATV system is developed, which uses LQ methods for linear time-varying (LTV) systems. Since the ATV dynamical system approximates the nonlinear robot dynamics along the state-reference trajectory, the resulting time-varying control law is suitable to achieve trajectory tracking on the robot manipulator. The ATV control law is implemented in experiments for the 6-axis industrial manipulator, tracking the near time-optimal trajectory. Experimental results verify the better performance achieved with the ATV control law, but also expose its shortcomings.;The second approach to address trajectory tracking is related in spirit, but different in crucial aspects, which ultimately endow this approach with its superior features. In this novel approach, the highly nonlinear dynamic model of robot manipulators, moving along a state-reference trajectory, is approximated as a class of piecewise affine (PWA) dynamical systems. We propose a framework to construct the referred PWA system, which consists in: (i) choosing strategic operating points on the state-reference trajectory with their respective (local) linearized system dynamics, (ii) constructing ellipsoidal regions centered at the operating points, whose purpose is to facilitate the scheduling strategy of controller gains designed for each local dynamics. Likewise, in order to switch controller gains as the robot state traverses in the direction of the state-reference trajectory, a simple scheduling strategy is proposed. The controller synthesis near each operating point is an LQR-type that takes into account the local coupled dynamics. The referred PWA control law is implemented in experiments for the 6-axis manipulator tracking the near time-optimal trajectory. The experimental results show the feasibility and superiority of the PWA control law over the typical PID controller and the ATV control law.;(Abstract shortened by UMI.).
机译:在本文中,我们研究了机器人技术中的两个重要主题:(i)时间最优的轨迹规划,以及(ii)轨迹跟踪的最优控制综合方法。在第一个主题中,我们集中于一个相当具体的问题子类,即沿着预定几何路径的时间最优轨迹规划。在这种问题中,纯几何路径是已知的,任务是找出如何在物理上尽可能短的时间内沿该路径移动。为了生成实际的机器人操纵器可以实现的真正最快的解决方案,应将完整的非线性动力学模型纳入问题公式中,作为生成轨迹和前馈转矩必须满足的约束条件。这个重要的问题在1980年代进行了研究,并根据所谓的速度极限曲线和变分法采用了许多相关的解决方法。现代公式直接离散化问题并获得大规模的数学优化问题,这是解决最优控制问题的一种重要方法,该方法已优于变分方法,这主要是因为它允许获得更难问题的数值解。通过扩展和改进现有的数学优化公式,解决了时间最优轨迹规划的问题。我们成功地整合了包括粘性摩擦在内的完整的非线性动力学模型,因为对于最快的运动,它比库仑摩擦更重要。当然,库仑摩擦也同样适用于我们的配方。我们开发了一个框架,以保证所生成的时间最优轨迹和前馈扭矩的精确动态可行性。我们的初始公式是以相当特定的方式精心设计的,因此它可以自然地提出凸松弛,从而完全解决原始问题的公式,该公式是非凸的,因此很难求解。为了从数值上解决所提出的公式,还开发了离散化方案。最终公式生成的时间近似于时间最优的轨迹和前馈转矩,其行进时间比纯时间最优解的行进时间大。然而,消除了由纯时间最优性引起的有害影响。在6轴工业机械手上的实验结果证实,我们的公式产生了可以在实际机器人机械手中实际实施的最快解决方案。在完成近时间最优轨迹的工作之后,我们探索了两种用于轨迹跟踪的控制器综合方法,在这样的快速轨迹下,更适合于实现轨迹跟踪。在第一种方法中,我们将沿状态参考轨迹移动的机器人操纵器的离散时间非线性动力学近似为离散时间的仿射时变(ATV)动力学系统。因此,针对一类离散时间ATV动力学系统,机器人操纵器的轨迹跟踪问题被提出为线性​​二次(LQ)最优控制问题。然后,开发了一种用于在ATV系统上实现轨迹跟踪的ATV控制律,该律将LQ方法用于线性时变(LTV)系统。由于ATV动力学系统沿状态参考轨迹逼近非线性机器人动力学,因此得出的时变控制律适合在机器人操纵器上实现轨迹跟踪。 ATV控制律是在6轴工业机械手的实验中实施的,跟踪接近时间最优的轨迹。实验结果证明了使用ATV控制律可获得更好的性能,但也暴露了其缺点。第二种解决轨迹跟踪的方法在本质上是相关的,但在关键方面却有所不同,最终使该方法具有其优越的功能。在这种新颖的方法中,沿着状态参考轨迹运动的机器人操纵器的高度非线性动力学模型被近似为一类分段仿射(PWA)动力学系统。我们提出了一个框架来构建引用的PWA系统,该框架包括:(i)在状态参考轨迹上选择具有各自(局部)线性化系统动力学的战略操作点,(ii)构造以操作点为中心的椭圆形区域,其目的是促进针对每个局部动态设计的控制器增益的调度策略。同样,为了在机器人状态沿状态参考轨迹的方向移动时切换控制器增益,提出了一种简单的调度策略。每个工作点附近的控制器综合为LQR型,其中考虑了局部耦合动力学。所引用的PWA控制律是在实验中实现的,用于6轴机械手跟踪接近时间最优的轨迹。实验结果表明,PWA控制律比典型的PID控制器和ATV控制律具有可行性和优越性。

著录项

  • 作者

    Reynoso Mora, Pedro.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Robotics.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 115 p.
  • 总页数 115
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号