首页> 外文期刊>IEEE Transactions on Robotics >Learning and Generalization of Compensative Zero-Moment Point Trajectory for Biped Walking
【24h】

Learning and Generalization of Compensative Zero-Moment Point Trajectory for Biped Walking

机译:两足步行的补偿零矩点轨迹的学习与推广

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an online learning framework for improving the robustness of zero-moment point (ZMP)-based biped walking controllers. The key idea is to learn a feedforward compensative ZMP (CZMP) trajectory from measured ZMP errors during repetitive walking motions by applying iterative learning control theory. The learned CZMP trajectory adjusts the reference ZMP and reduces the effect of unmodeled dynamics at the pattern-generation stage. From individual learned CZMP trajectories of typical walking parameters, we can build up a CZMP database. This database can be used for generating an initial CZMP whenever a new walking pattern is executed. A prediction from the database is done by -nearest neighbor regression based on the Mahalonobis distance. Compared with state-of-the-art model-based methods, the proposed learning approach is model free and allows online adaptation to constant unknown disturbances. Enhanced walking robustness can be observed from reduced average ZMP error and more robust reaction against external disturbances on the DLR humanoid robot TORO.
机译:本文提出了一种在线学习框架,用于提高基于零力矩点(ZMP)的Biped行走控制器的鲁棒性。关键思想是通过应用迭代学习控制理论,从在重复步行运动过程中测得的ZMP误差中学习前馈补偿ZMP(CZMP)轨迹。获知的CZMP轨迹可调整参考ZMP并在模式生成阶段减少未建模动力学的影响。从典型的步行参数的单个CZMP轨迹中,我们可以建立一个CZMP数据库。每当执行新的行走模式时,此数据库都可用于生成初始CZMP。来自数据库的预测是通过基于Mahalonobis距离的近邻回归完成的。与基于模型的最新方法相比,所提出的学习方法是无模型的,并且可以在线适应不断的未知干扰。在DLR人形机器人TORO上,通过降低平均ZMP错误和对外部干扰的更强大的反应,可以观察到增强的行走鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号