首页> 外文期刊>IEEE Transactions on Robotics and Automation >Learning approximation of feedforward control dependence on the task parameters with application to direct-drive manipulator tracking
【24h】

Learning approximation of feedforward control dependence on the task parameters with application to direct-drive manipulator tracking

机译:学习前馈控制对任务参数的依赖性,并将其应用于直接驱动机械手跟踪

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new paradigm for model-free design of a trajectory tracking controller and its experimental implementation in control of a direct-drive manipulator. In accordance with the paradigm, a nonlinear approximation for the feedforward control is used. The input to the approximation scheme are task parameters that define the trajectory to be tracked. The initial data for the approximation is obtained by performing learning control iterations for a number of selected tasks. The paper develops and implements practical approaches to both the approximation and learning control. We propose a new learning control algorithm based on the online Levenberg-Marquardt minimization of a regularized tracking error index. The paper demonstrates an experimental application of the paradigm to trajectory tracking control of fast (1.25 s) motions of a direct-drive industrial robot AdeptOne. In our experiments, the learning control converges in five to six iterations for a given set of the task parameters.
机译:本文提出了一种新的范例,用于轨迹跟踪控制器的无模型设计及其在直接驱动机械手控制中的实验实现。根据范例,前馈控制使用非线性近似。逼近方案的输入是任务参数,这些任务参数定义了要跟踪的轨迹。通过对许多选定任务执行学习控制迭代,可以获得近似值的初始数据。本文开发并实施了逼近和学习控制的实用方法。我们提出了一种新的基于正则化跟踪误差指数的在线Levenberg-Marquardt最小化的学习控制算法。本文演示了该范例在直接驱动工业机器人AdeptOne的快速(1.25 s)运动轨迹跟踪控制中的实验应用。在我们的实验中,对于给定的一组任务参数,学习控制在五到六个迭代中收敛。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号