...
首页> 外文期刊>Nanotechnology, IEEE Transactions on >Enhancement of CMOSFETs Performance by Utilizing SACVD-Based Shallow Trench Isolation for the 40-nm Node and Beyond
【24h】

Enhancement of CMOSFETs Performance by Utilizing SACVD-Based Shallow Trench Isolation for the 40-nm Node and Beyond

机译:利用基于SACVD的40nm节点及以下晶体管的浅沟槽隔离来增强CMOSFET的性能

获取原文
获取原文并翻译 | 示例

摘要

This paper reports an improved densification anneal process for sub-atmospheric chemical vapor deposition (SACVD)-based shallow trench isolation (STI) to enhance CMOSFETs performance for 40-nm node and beyond. The improved STI densification process is demonstrated to generate a lower compressive stress in the active area as compared to the Standard STI process used in 40 nm technology. For nMOS devices with the improved densification process, the reduction of STI compressive stress is beneficial to the electron mobility and leads to an enhancement of on-current ($I_{{rm ON}}$ ). In addition, the $I_{{rm ON}}$ enhancements would significantly increase with shrinking the device dimensions (gate width and source/drain length). On the other hand, the improved densification process would not degrade the pMOSFET''s performance resulting from the very small piezoresistance coefficients for 〈1 0 0〉 channel direction. The superior junction leakage characteristics for the junction diodes with the improved anneal process can further verify the lower STI-induced compressive stress due to the less energy bandgap narrowing. Hence, the improved STI process can be adopted in 40-nm CMOS technology and beyond, where device structures have very small active areas.
机译:本文报道了一种改进的用于基于大气化学气相沉积(SACVD)的浅沟槽隔离(STI)的致密化退火工艺,以增强40nm及更高节点的CMOSFET性能。与40 nm技术中使用的标准STI工艺相比,改进的STI致密化工艺可在活动区域​​产生较低的压应力。对于具有改进的致密化工艺的nMOS器件,减小STI压缩应力有利于电子迁移率,并导致导通电流($ I _ {{rm ON}} $)的增加。此外,随着器件尺寸(栅极宽度和源极/漏极长度)的缩小,$ I _ {{rm ON}} $的增强将大大增加。另一方面,改进的致密化工艺不会由于<1 0 0沟道方向的很小的压阻系数而降低pMOSFET的性能。具有改进的退火工艺的结型二极管具有优异的结漏特性,可以进一步证实由于能带隙变窄较小,STI引起的压应力更低。因此,改进的STI工艺可用于40 nm CMOS技术及以后的技术中,在该技术中,器件结构的有源区非常小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号