首页> 外文学位 >Development of shallow trench isolation bounded single-photon avalanche detectors for acousto-optic signal enhancement and frequency up-conversion.
【24h】

Development of shallow trench isolation bounded single-photon avalanche detectors for acousto-optic signal enhancement and frequency up-conversion.

机译:浅沟槽隔离有界单光子雪崩检测器的开发,用于声光信号增强和频率上变频。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation describes the development of the first CMOS single photon avalanche diode (SPAD) fabricated in a deep-submicron commercial CMOS process. Single photon detection is often necessary for high-sensitivity, high dynamic range time-resolved optical measurements in diverse applications in medicine, biology, military, and optical communication links. Single photon avalanche diode (SPAD) detectors have become the device of choice and have made strong gains in recent years. They are unique in that they provide digital information of the arrival of an individual photon impinging on the detector, thus being a very powerful tool when time-of-arrival information and timing resolution are crucial. Timing precision of the detector will improve contrast in fluorescence lifetime imaging and resolution in laser ranging applications.;Traditionally, single photon detectors have been fabricated using custom processes because of the conditions under which the devices operate under. Because of the need to sustain high currents and high electric-fields, special custom fabrication processes have been developed. These fabrication processes have great benefits such as low-noise, high detection efficiencies, low jitter, and tailored spectral responses towards longer wavelengths. However, these fabrication techniques are often undesirable due to increased capacitance from off-chip quenching, recharging, and processing circuitry, resulting in longer detector dead times and slower sampling rates. Furthermore, large-scale production and scalability to arrays is impractical. There has been a trend towards using Complementary Metal-Oxide-Semiconductor (CMOS) technology for constructing SPAD pixels and arrays with integrated circuitry to overcome these limitations. Though commercial CMOS technologies are by nature, generic, and are not designed for SPAD devices, they can still offer considerable advantages in certain areas where custom processes lack.;This dissertation describes the modeling, simulation, and full characterization of a CMOS STI-bounded Single Photon Avalanche Diode (SPAD). State-of-the-art sampling rates, dead-time, and jitter performance are characterized, and the device is compared to traditional diffused-guard ring structures for solid-state SPADs. Further, novel applications of the CMOS SPAD for acousto-optic signal enhancement and frequency up-conversion of 1550nm are described. An optical scatter system for acoustic characterization of ultrasound responsive microbubbles and particles is designed and developed. Further, a novel method of fluorescence modulation using dye-loaded microbubbles is demonstrated.
机译:本文介绍了在深亚微米商业CMOS工艺中制造的第一个CMOS单光子雪崩二极管(SPAD)的开发。在医学,生物学,军事和光通信链路的各种应用中,高灵敏度,高动态范围时间分辨光学测量通常需要单光子检测。单光子雪崩二极管(SPAD)检测器已成为首选设备,并且近年来取得了巨大的进步。它们的独特之处在于,它们提供了撞击到检测器上的单个光子到达的数字信息,因此,当到达时间信息和定时分辨率至关重要时,它是一种非常强大的工具。检测器的定时精度将改善荧光寿命成像中的对比度和激光测距应用中的分辨率。传统上,由于设备的工作条件,使用定制工艺制造了单光子检测器。由于需要维持高电流和高电场,因此已经开发了特殊的定制制造工艺。这些制造工艺具有很大的好处,例如低噪声,高检测效率,低抖动以及针对更长波长的定制光谱响应。然而,由于来自芯片外淬火,再充电和处理电路的增加的电容,这些制造技术通常是不期望的,从而导致更长的检测器死区时间和较慢的采样速率。此外,大规模生产和对阵列的可扩展性是不切实际的。使用互补金属氧化物半导体(CMOS)技术来构建具有集成电路的SPAD像素和阵列的趋势已经克服了这些限制。尽管商用CMOS技术本质上是通用的,并且不是为SPAD器件设计的,但它们仍可以在某些缺少定制工艺的领域中提供相当大的优势。本论文描述了CMOS STI边界的建模,仿真和完整特性单光子雪崩二极管(SPAD)。表征了最新的采样率,死区时间和抖动性能,并将该设备与用于固态SPAD的传统扩散保护环结构进行了比较。此外,描述了CMOS SPAD在声光信号增强和1550nm频率上转换方面的新应用。设计和开发了用于超声响应微气泡和颗粒的声学表征的光学散射系统。此外,展示了一种使用负载染料的微泡进行荧光调制的新方法。

著录项

  • 作者

    Hsu, Mark J.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 222 p.
  • 总页数 222
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:36:48

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号