首页> 外文期刊>IEEE Transactions on Information Theory >Eigenvalue Estimation of the Exponentially Windowed Sample Covariance Matrices
【24h】

Eigenvalue Estimation of the Exponentially Windowed Sample Covariance Matrices

机译:指数窗样本协方差矩阵的特征值估计

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we consider an exponentially windowed sample covariance matrix (EWSCM) and propose an improved estimator for its eigenvalues. We use new advances in random matrix theory, which describe the limiting spectral distribution of the large dimensional doubly correlated Wishart matrices to find the support and distribution of the eigenvalues of the EWSCM. We then employ the complex integration and residue theorem to design an estimator for the eigenvalues, which satisfies the cluster separability condition, assuming that the eigenvalue multiplicities are known. We show that the proposed estimator is consistent in the asymptotic regime and has good performance in finite sample size situations. Simulation results show that the proposed estimator outperforms the traditional estimator, significantly.
机译:在本文中,我们考虑了指数窗样本协方差矩阵(EWSCM),并为其特征值提出了一种改进的估计器。我们使用随机矩阵理论的新进展,该理论描述了大维双相关Wishart矩阵的极限频谱分布,以找到EWSCM特征值的支持和分布。然后,我们使用复数积分和残差定理为特征值设计一个估计器,假设特征值多重性是已知的,它满足聚类可分离性条件。我们表明,提出的估计量在渐近状态下是一致的,并且在有限样本量的情况下具有良好的性能。仿真结果表明,提出的估计器明显优于传统的估计器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号