首页> 外文期刊>Journal of visual communication & image representation >Robust estimation for image noise based on eigenvalue distributions of large sample covariance matrices
【24h】

Robust estimation for image noise based on eigenvalue distributions of large sample covariance matrices

机译:基于大样本协方差矩阵特征值分布的图像噪声鲁棒估计

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a novel algorithm to estimate Gaussian noise levels for captured natural images by rigorously analyzing the limiting distributions of the eigenvalue spectrum of a large covariance matrix with Gaussian samples. In order to select a relatively homogeneous region that best represents the noise, the corresponding image patches are first rearranged to construct a high-dimensional noise covariance matrix. And then, an optimal criterion for classifying homogeneous regions is derived based on the statistical relationship between the largest and the second largest eigenvalues of a sample covariance matrix. Moreover, we further explore the reasons for the bias of the maximum likelihood estimator of the noise variance both in high-dimensional settings and finite samples. According to random matrix theory, we clarify the asymptotic properties of the trace of a sample covariance matrix to measure the error bounds of estimation and then propose a new bias-corrected estimator. To this end, an effective estimation method for the noise level is devised based on the boundness and asymptotic behavior of pure noise eigenvalues of the selected patches. The estimation performance of our method has been guaranteed both theoretically and empirically. Experimental results have demonstrated that our approach can reliably infer true noise variance and is superior to the competing methods in terms of both estimation accuracy and robustness. (C) 2019 Elsevier Inc. All rights reserved.
机译:在本文中,我们通过严格分析带有高斯样本的大协方差矩阵特征值谱的极限分布,提出了一种新算法来估计捕获的自然图像的高斯噪声水平。为了选择最能代表噪声的相对均匀的区域,首先重新排列相应的图像块,以构建高维噪声协方差矩阵。然后,基于样本协方差矩阵的最大和第二最大特征值之间的统计关系,得出用于对同质区域进行分类的最佳准则。此外,我们进一步探讨了在高维设置和有限样本中噪声方差的最大似然估计器存在偏差的原因。根据随机矩阵理论,我们阐明了样本协方差矩阵的迹线的渐近性质,以测量估计的误差范围,然后提出了一种新的偏差校正估计器。为此,基于所选补丁的纯噪声本征值的有界性和渐近行为,设计了一种有效的噪声水平估计方法。我们的方法的估计性能在理论和经验上都得到了保证。实验结果表明,我们的方法可以可靠地推断出真实的噪声方差,并且在估计精度和鲁棒性方面均优于竞争方法。 (C)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号