首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Eigenvalue Estimation of Hyperspectral Wishart Covariance Matrices From Limited Number of Samples
【24h】

Eigenvalue Estimation of Hyperspectral Wishart Covariance Matrices From Limited Number of Samples

机译:基于有限样本数的高光谱Wishart协方差矩阵的特征值估计

获取原文
获取原文并翻译 | 示例

摘要

Estimation of covariance matrices is a fundamental step in hyperspectral remote sensing where most detection algorithms make use of the covariance matrix in whitening procedures. We present a simple method to estimate all $p$ eigenvalues of a Wishart-distributed sampled covariance matrix (with which an improved covariance can be constructed) when the number of samples $(n)$ is small, $n/p > 1$ and less than a few tens. Our method is based on the Marcenko-Pastur (M-P) law, theory of eigenvalue bounds, and energy conservation. We compute an apparent multiplicity for each sampled eigenvalue and then shift the sampled eigenvalues according the maximum likelihood location (M-P mode). We impose energy conservation in two distinct regions; small eigenvalues and large eigenvalues, where the transition between the two regions is found by solving successive first-order regression equation for the sampled data. The method also improves the condition number of the data (small eigenvalues are shifted upward in values), hence, it is also “regularization,” where the regularization is a multiplicative vector regularization as opposed to the traditional additive scalar regularization where all eigenvalues are shifted upward by the same value.
机译:协方差矩阵的估计是高光谱遥感中的基本步骤,其中大多数检测算法在美白过程中都使用协方差矩阵。当样本数量为$(n)$较小,$ n / p> 1 $时,我们提出了一种简单的方法来估计Wishart分布的采样协方差矩阵的所有$ p $特征值(可以构建改进的协方差)。不到几十个我们的方法基于Marcenko-Pastur(M-P)律,特征值范围理论和能量守恒。我们为每个样本特征值计算一个表观多重性,然后根据最大似然位置(M-P模式)移动样本特征值。我们在两个不同的区域实施节能措施;小特征值和大特征值,其中两个区域之间的过渡是通过对采样数据求解连续的一阶回归方程来找到的。该方法还改善了数据的条件数(较小的特征值在值上向上移位),因此,它也是“正则化”,其中该正则化是一个乘法矢量正则化,而传统的加性标量正则化是将所有特征值都移位了向上增加相同的值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号