首页> 外文期刊>Image Processing, IEEE Transactions on >Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems
【24h】

Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems

机译:基于快速梯度的总变异图像去噪和去模糊问题算法

获取原文
获取原文并翻译 | 示例

摘要

This paper studies gradient-based schemes for image denoising and deblurring problems based on the discretized total variation (TV) minimization model with constraints. We derive a fast algorithm for the constrained TV-based image deburring problem. To achieve this task, we combine an acceleration of the well known dual approach to the denoising problem with a novel monotone version of a fast iterative shrinkage/thresholding algorithm (FISTA) we have recently introduced. The resulting gradient-based algorithm shares a remarkable simplicity together with a proven global rate of convergence which is significantly better than currently known gradient projections-based methods. Our results are applicable to both the anisotropic and isotropic discretized TV functionals. Initial numerical results demonstrate the viability and efficiency of the proposed algorithms on image deblurring problems with box constraints.
机译:本文研究基于带约束的离散总变化量(TV)最小化模型的基于梯度的图像去噪和去模糊问题方案。我们导出了一种基于约束的电视图像去毛刺问题的快速算法。为了实现此任务,我们将解决噪声问题的众所周知的双重方法的加速与我们最近推出的快速迭代收缩/阈值算法(FISTA)的新颖单调版本相结合。所得的基于梯度的算法与众不同之处在于其简单性以及经过验证的全局收敛速度,该收敛速度明显优于当前已知的基于梯度投影的方法。我们的结果适用于各向异性和各向同性离散电视功能。初始数值结果证明了该算法在具有盒子约束的图像去模糊问题上的可行性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号