首页> 外文期刊>IEEE Transactions on Image Processing >Context-Adaptive Neural Network-Based Prediction for Image Compression
【24h】

Context-Adaptive Neural Network-Based Prediction for Image Compression

机译:基于语境自适应神经网络的图像压缩预测

获取原文
获取原文并翻译 | 示例

摘要

This paper describes a set of neural network architectures, called Prediction Neural Networks Set (PNNS), based on both fully-connected and convolutional neural networks, for intra image prediction. The choice of neural network for predicting a given image block depends on the block size, hence does not need to be signalled to the decoder. It is shown that, while fully-connected neural networks give good performance for small block sizes, convolutional neural networks provide better predictions in large blocks with complex textures. Thanks to the use of masks of random sizes during training, the neural networks of PNNS well adapt to the available context that may vary, depending on the position of the image block to be predicted. When integrating PNNS into a H.265 codec, PSNR-rate performance gains going from 1.46 & x0025; to 5.20 & x0025; are obtained. These gains are on average 0.99 & x0025; larger than those of prior neural network based methods. Unlike the H.265 intra prediction modes, which are each specialized in predicting a specific texture, the proposed PNNS can model a large set of complex textures.
机译:本文描述了一组神经网络架构,称为预测神经网络集(PNNS),基于完全连接和卷积神经网络,用于帧内图像预测。用于预测给定图像块的神经网络的选择取决于块大小,因此不需要向解码器发出信号。结果表明,虽然完全连接的神经网络对小型块尺寸具有良好的性能,但卷积神经网络在具有复杂纹理的大块中提供了更好的预测。由于在训练期间使用随机尺寸的掩模,PNNS的神经网络很好地适应可变的上下文,这取决于要预测的图像块的位置。将PNN集成到H.265编解码器中,PSNR速率性能增益从1.46&x0025进行;到5.20和x0025;获得。这些收益平均为0.99&x0025;大于基于先前神经网络的方法的方法。与H.265帧内预测模式不同,每个预测模式都是专门预测特定纹理,所提出的PNN可以模拟一组大量复杂纹理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号