首页> 外文期刊>IEEE Transactions on Fuzzy Systems >H∞ Fuzzy Observer-Based Control for a Class of Nonlinear Distributed Parameter Systems With Control Constraints
【24h】

H∞ Fuzzy Observer-Based Control for a Class of Nonlinear Distributed Parameter Systems With Control Constraints

机译:一类具有控制约束的非线性分布参数系统的基于H∞模糊观测器的控制

获取原文
获取原文并翻译 | 示例

摘要

An H$_{infty}$ fuzzy observer-based control design is proposed for a class of nonlinear parabolic partial differential equation (PDE) systems with control constraints, for which the eigenspectrum of the spatial differential operator can be partitioned into a finite-dimensional slow one and an infinite-dimensional stable fast complement. In the proposed control scheme, Galerkin''''s method is initially applied to the PDE system to derive a nonlinear ordinary differential equation (ODE) system that accurately describes the dynamics of the dominant (slow) modes of the PDE system. The resulting nonlinear ODE system is subsequently represented by the Takagi–Sugeno (T-S) fuzzy model. Then, based on the T-S fuzzy model, a fuzzy observer-based controller is developed to stabilize the nonlinear PDE system and achieve an optimized H $_{infty }$ disturbance attenuation performance for the finite-dimensional slow system, while control constraints are respected. The outcome of the H$_{infty }$ fuzzy observer-based control problem is formulated as a bilinear matrix inequality (BMI) optimization problem. A local optimization algorithm that treats the BMI as a double linear matrix inequality is presented to solve this BMI optimization problem. Finally, the proposed design method is applied to the control of the temperature profile of a catalytic rod to illustrate its effectiveness.
机译:针对具有控制约束的一类非线性抛物型偏微分方程(PDE)系统,提出了一种基于H $ _ {infty} $模糊观测器的控制设计,对于该系统,空间微分算子的特征谱可以划分为有限维慢速和无限维稳定快速补码。在提出的控制方案中,最初将Galerkin的方法应用于PDE系统,以推导一个非线性的常微分方程(ODE)系统,该系统可以精确地描述PDE系统的主要(慢速)模式的动力学。由此产生的非线性ODE系统随后由Takagi-Sugeno(T-S)模糊模型表示。然后,基于TS模糊模型,开发了一种基于模糊观测器的控制器,以稳定非线性PDE系统,并在考虑控制约束的情况下实现了有限维慢系统的优化H $ _ {infty} $扰动衰减性能。 。基于模糊观测器的H $ _ {infty} $控制问题的结果被表述为双线性矩阵不等式(BMI)优化问题。提出了一种将BMI视为双重线性矩阵不等式的局部优化算法,以解决该BMI优化问题。最后,将所提出的设计方法应用于催化棒温度曲线的控制,以说明其有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号