首页> 外文期刊>Fuzzy Systems, IEEE Transactions on >A Novel Approach to Building a Robust Fuzzy Rough Classifier
【24h】

A Novel Approach to Building a Robust Fuzzy Rough Classifier

机译:一种构建鲁棒模糊粗糙分类器的新方法

获取原文
获取原文并翻译 | 示例

摘要

Currently, most robust classifiers with parameters focus on the determination of the optimal or suboptimal parameters. There are no research studies or even discussions about robust classifiers on all of the possible parameters. This paper considers the robust classifier and finds that the robust rough classifier satisfies a nested topological structure; then, the , which reflects the classifier on all of the possible parameters, is proposed. First, some notions, such as the robust discernibility vector, the robust value reduct, and the robust covering vector, are proposed; these notions can reflect the classical corresponding notions on all of the possible parameters. It is more important that these notions share a common characteristic: the nested structure. The nested structure of these notions makes theoretically possible. Furthermore, some novel algorithms are designed to compute the robust value reduct, the robust covering degree, and the robust classifier. These algorithms make the technologically possible. Finally, numerical experiments demonstrate that the is effective and efficient for classification and predication.
机译:当前,大多数具有参数的鲁棒分类器集中于确定最佳或次优参数。没有关于所有可能参数的鲁棒分类器的研究或讨论。本文考虑了鲁棒分类器,发现鲁棒粗糙分类器满足嵌套拓扑结构。然后,提出了,它在所有可能的参数上反映了分类器。首先,提出了一些概念,例如鲁棒的可分辨性矢量,鲁棒的值约简和鲁棒的覆盖矢量。这些概念可以反映所有可能参数上的经典对应概念。更重要的是,这些概念具有一个共同的特征:嵌套结构。这些概念的嵌套结构在理论上是可能的。此外,设计了一些新颖的算法来计算鲁棒性值约简,鲁棒性覆盖度和鲁棒性分类器。这些算法使技术成为可能。最后,数值实验表明,该方法对于分类和预测是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号