首页> 外文期刊>Fuzzy sets and systems >Robust fuzzy rough classifiers
【24h】

Robust fuzzy rough classifiers

机译:鲁棒的模糊粗糙分类器

获取原文
获取原文并翻译 | 示例

摘要

Fuzzy rough sets, generalized from Pawlak's rough sets, were introduced for dealing with continuous or fuzzy data. This model has been widely discussed and applied these years. It is shown that the model of fuzzy rough sets is sensitive to noisy samples, especially sensitive to mislabeled samples. As data are usually contaminated with noise in practice, a robust model is desirable. We introduce a new model of fuzzy rough set model, called soft fuzzy rough sets, and design a robust classification algorithm based on the model. Experimental results show the effectiveness of the proposed algorithm.
机译:引入了从Pawlak的粗糙集推广而来的模糊粗糙集,用于处理连续或模糊数据。这些年来,已经对该模型进行了广泛的讨论和应用。结果表明,模糊粗糙集模型对噪声样本敏感,尤其对标签错误的样本敏感。由于在实践中数据通常被噪声污染,因此需要一个健壮的模型。我们引入了一种新的模糊粗糙集模型,称为软模糊粗糙集,并基于该模型设计了一种鲁棒的分类算法。实验结果表明了该算法的有效性。

著录项

  • 来源
    《Fuzzy sets and systems》 |2011年第1期|p.26-43|共18页
  • 作者单位

    Harbin Institute of Technology, Harbin 150001, China,Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China Received 15 December 2009, received in revised form 15 January 2011, accepted 27 January 2011 Available online 5 February 2011;

    Harbin Institute of Technology, Harbin 150001, China;

    Harbin Institute of Technology, Harbin 150001, China;

    Harbin Institute of Technology, Harbin 150001, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    approximate reasoning; decision analysis; fuzzy statistics and data analysis; fuzzy rough sets; robustness;

    机译:近似推理;决策分析;模糊统计和数据分析;模糊粗糙集;健壮性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号