首页> 外文期刊>Knowledge and Data Engineering, IEEE Transactions on >Building a Rule-Based Classifierȁ4;A Fuzzy-Rough Set Approach
【24h】

Building a Rule-Based Classifierȁ4;A Fuzzy-Rough Set Approach

机译:建立基于规则的分类器ȁ4;模糊粗糙集方法

获取原文
获取原文并翻译 | 示例

摘要

The fuzzy-rough set (FRS) methodology, as a useful tool to handle discernibility and fuzziness, has been widely studied. Some researchers studied on the rough approximation of fuzzy sets, while some others focused on studying one application of FRS: attribute reduction (i.e., feature selection). However, constructing classifier by using FRS, as another application of FRS, has been less studied. In this paper, we build a rule-based classifier by using one generalized FRS model after proposing a new concept named as ¿consistence degree¿ which is used as the critical value to keep the discernibility information invariant in the processing of rule induction. First, we generalized the existing FRS to a robust model with respect to misclassification and perturbation by incorporating one controlled threshold into knowledge representation of FRS. Second, we propose a concept named as ¿consistence degree¿ and by the strict mathematical reasoning, we show that this concept is reasonable as a critical value to reduce redundant attribute values in database. By employing this concept, we then design a discernibility vector to develop the algorithms of rule induction. The induced rule set can function as a classifier. Finally, the experimental results show that the proposed rule-based classifier is feasible and effective on noisy data.
机译:模糊粗糙集(FRS)方法作为一种处理可分辨性和模糊性的有用工具,已经得到了广泛的研究。一些研究人员研究了模糊集的粗略近似,而另一些研究人员则专注于研究FRS的一种应用:属性约简(即特征选择)。但是,作为FRS的另一个应用,使用FRS构造分类器的研究较少。在本文中,我们在提出一个新的概念称为ƒƒÂ,,conceptual degreeÂÂ的新概念后,通过使用一个广义FRS模型来构建基于规则的分类器,该概念用作保持的关键值规则归纳处理中的识别信息不变。首先,我们通过将一个受控阈值合并到FRS的知识表示中,将现有的FRS概括为针对错误分类和扰动的鲁棒模型。其次,我们提出了一个名为ÃÂ,,consistencedegreeÃ,,的概念,并且通过严格的数学推理,我们证明了此概念对于减少数据库中冗余属性值的临界值是合理的。 。通过采用此概念,我们然后设计了可区分性矢量来开发规则归纳算法。导出的规则集可以用作分类器。最后,实验结果表明,所提出的基于规则的分类器对噪声数据是可行且有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号