首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >High-Dimensional Uncertainty Quantification of Electronic and Photonic IC With Non-Gaussian Correlated Process Variations
【24h】

High-Dimensional Uncertainty Quantification of Electronic and Photonic IC With Non-Gaussian Correlated Process Variations

机译:具有非高斯相关工艺变化的电子和光子IC的高维不确定性量化

获取原文
获取原文并翻译 | 示例

摘要

Uncertainty quantification based on generalized polynomial chaos has been used in many applications. It has also achieved great success in variation-aware design automation. However, almost all existing techniques assume that the parameters are mutually independent or Gaussian correlated, which is rarely true in real applications. For instance, in chip manufacturing, many process variations are actually correlated. Recently, some techniques have been developed to handle non-Gaussian correlated random parameters, but they are time-consuming for high-dimensional problems. We present a new framework to solve uncertainty quantification problems with many non-Gaussian correlated uncertainties. First, we propose a set of smooth basis functions to well capture the impact of non-Gaussian correlated process variations. We develop a tensor approach to compute these basis functions in a high-dimension setting. Second, we investigate the theoretical aspect and practical implementation of a sparse solver to compute the coefficients of all basis functions. We provide some theoretical analysis for the exact recovery condition and error bound of this sparse solver in the context of uncertainty quantification. We present three adaptive sampling approaches to improve the performance of the sparse solver. Finally, we validate our methods by synthetic and practical electronic/photonic ICs with 19 to 57 non-Gaussian correlated variation parameters. Our approach outperforms Monte Carlo by thousands of times in terms of efficiency. It can also accurately predict the output density functions with multiple peaks caused by non-Gaussian correlations, which are hard to capture by existing methods.
机译:许多应用中使用了基于广义多项式混沌的不确定性量化。它还取得了巨大的成功,在变异感知的设计自动化中取得了巨大的成功。然而,几乎所有现有技术都假设参数是相互独立的或高斯相关的,这在真实应用中很少是真的。例如,在芯片制造中,许多过程变化实际上是相关的。最近,已经开发了一些技术来处理非高斯相关的随机参数,但它们对高维问题的耗时。我们提出了一个新的框架,以解决许多非高斯相关的不确定性的不确定性量化问题。首先,我们提出了一套顺利的基础作用,挖掘了非高斯相关过程变化的影响。我们开发了一种张量方法来计算在高维设置中的基础函数。其次,我们研究了稀疏求解器的理论方面和实际实现,以计算所有基本函数的系数。我们在不确定量量化的背景下为该稀疏求解器的确切恢复条件和误差提供了一些理论分析。我们提出了三种自适应采样方法来提高稀疏求解器的性能。最后,我们通过合成和实用的电子/光子IC验证了我们的方法,具有19至57个非高斯相关变化参数。在效率方面,我们的方法在数千次以数千次以数千次优于蒙特卡罗。它还可以准确地预测由非高斯相关性引起的多个峰的输出密度函数,这很难通过现有方法捕获。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号