首页> 外文期刊>IEEE signal processing letters >Bayesian Non-Negative Matrix Factorization With Adaptive Sparsity and Smoothness Prior
【24h】

Bayesian Non-Negative Matrix Factorization With Adaptive Sparsity and Smoothness Prior

机译:具有自适应稀疏性和平滑度先验的贝叶斯非负矩阵分解

获取原文
获取原文并翻译 | 示例

摘要

Non-negative matrix factorization (NMF) is generally an ill-posed problem which requires further regularization. Regularization of NMF using the assumption of sparsity is common as well as regularization using smoothness. In many applications it is natural to assume that both of these assumptions hold together. To avoid ad hoc combination of these assumptions using weighting coefficient, we formulate the problem using a probabilistic model and estimate it in a Bayesian way. Specifically, we use the fact that the assumptions of sparsity and smoothness are different forms of prior covariance matrix modeling. We use a generalized model that includes both sparsity and smoothness as special cases and estimate all its parameters using the variational Bayes method. The resulting matrix factorization algorithm is compared with state-of-the-art algorithms on large clinical dataset of 196 image sequences from dynamic renal scintigraphy. The proposed algorithm outperforms other algorithms in statistical evaluation.
机译:非负矩阵分解(NMF)通常是不适定的问题,需要进一步进行正则化。使用稀疏假设对NMF进行正则化以及使用平滑度进行正则化是很常见的。在许多应用中,很自然地假设这两个假设会同时存在。为了避免使用加权系数对这些假设进行临时组合,我们使用概率模型来表述问题,并以贝叶斯方法对其进行估算。具体来说,我们使用以下事实:稀疏性和平滑度的假设是先验协方差矩阵建模的不同形式。我们使用包含稀疏性和平滑度的通用模型作为特殊情况,并使用变分贝叶斯方法估算其所有参数。将所得矩阵分解算法与动态算法的196个图像序列的大型临床数据集上的最新算法进行了比较。提出的算法在统计评估方面优于其他算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号