首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >Enforcing Harmonicity and Smoothness in Bayesian Non-Negative Matrix Factorization Applied to Polyphonic Music Transcription
【24h】

Enforcing Harmonicity and Smoothness in Bayesian Non-Negative Matrix Factorization Applied to Polyphonic Music Transcription

机译:贝叶斯非负矩阵因式分解在和弦音乐转录中的增强谐和性

获取原文
获取原文并翻译 | 示例

摘要

This paper presents theoretical and experimental results about constrained non-negative matrix factorization (NMF) in a Bayesian framework. A model of superimposed Gaussian components including harmonicity is proposed, while temporal continuity is enforced through an inverse-Gamma Markov chain prior. We then exhibit a space-alternating generalized expectation-maximization (SAGE) algorithm to estimate the parameters. Computational time is reduced by initializing the system with an original variant of multiplicative harmonic NMF, which is described as well. The algorithm is then applied to perform polyphonic piano music transcription. It is compared to other state-of-the-art algorithms, especially NMF-based. Convergence issues are also discussed on a theoretical and experimental point of view. Bayesian NMF with harmonicity and temporal continuity constraints is shown to outperform other standard NMF-based transcription systems, providing a meaningful mid-level representation of the data. However, temporal smoothness has its drawbacks, as far as transients are concerned in particular, and can be detrimental to transcription performance when it is the only constraint used. Possible improvements of the temporal prior are discussed.
机译:本文介绍了在贝叶斯框架下关于约束非负矩阵分解的理论和实验结果。提出了一种包括高次谐波在内的高斯分量叠加模型,同时通过反伽马氏先验链增强了时间连续性。然后,我们展示一种空间交替的广义期望最大化(SAGE)算法来估计参数。通过使用倍频谐波NMF的原始变体来初始化系统,可以减少计算时间,这也已描述。然后将该算法应用于执行和弦钢琴音乐转录。将其与其他最新算法(尤其是基于NMF的算法)进行了比较。还从理论和实验的角度讨论了收敛问题。具有谐波和时间连续性约束的贝叶斯NMF被证明优于其他基于NMF的标准转录系统,从而提供了有意义的中层数据表示。但是,时间平滑度有其缺点,特别是涉及到瞬态时,当它是唯一使用的约束条件时,可能会不利于转录性能。讨论了时间先验的可能改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号