首页> 外文期刊>Journal of VLSI signal processing systems >Unmixing of Hyperspectral Images using Bayesian Non-negative Matrix Factorization with Volume Prior
【24h】

Unmixing of Hyperspectral Images using Bayesian Non-negative Matrix Factorization with Volume Prior

机译:使用体积先验的贝叶斯非负矩阵分解分解高光谱图像

获取原文
获取原文并翻译 | 示例

摘要

Hyperspectral imaging can be used in assessing the quality of foods by decomposing the image into constituents such as protein, starch, and water. Observed data can be considered a mixture of underlying characteristic spectra (endmembers), and estimating the constituents and their abundances requires efficient algorithms for spectral unmixing. We present a Bayesian spectral unmixing algorithm employing a volume constraint and propose an inference procedure based on Gibbs sampling. We evaluate the method on synthetic and real hyperspectral data of wheat kernels. Results show that our method perform as good or better than existing volume constrained methods. Further, our method gives credible intervals for the endmembers and abundances, which allows us to asses the confidence of the results.
机译:通过将图像分解为蛋白质,淀粉和水等成分,可将高光谱成像用于评估食品质量。可以将观测到的数据视为基础特征频谱(端成员)的混合,估计成分及其丰度需要有效的算法来进行频谱分解。我们提出了一种采用音量约束的贝叶斯频谱分解算法,并提出了基于吉布斯采样的推理程序。我们对小麦籽粒的合成和真实高光谱数据进行了评估。结果表明,我们的方法比现有的体积受限方法具有更好的性能。此外,我们的方法为末端成员和丰度提供了可靠的间隔,这使我们能够评估结果的可信度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号