首页> 外文期刊>Robotics & Automation Magazine, IEEE >Vision-Controlled Micro Flying Robots: From System Design to Autonomous Navigation and Mapping in GPS-Denied Environments
【24h】

Vision-Controlled Micro Flying Robots: From System Design to Autonomous Navigation and Mapping in GPS-Denied Environments

机译:视觉控制的微型飞行机器人:在拒绝GPS的环境中从系统设计到自主导航和制图

获取原文
获取原文并翻译 | 示例

摘要

Autonomous microhelicopters will soon play a major role in tasks like search and rescue, environment monitoring, security surveillance, and inspection. If they are further realized in small scale, they can also be used in narrow outdoor and indoor environments and represent only a limited risk for people. However, for such operations, navigating based only on global positioning system (GPS) information is not sufficient. Fully autonomous operation in cities or other dense environments requires microhelicopters to fly at low altitudes, where GPS signals are often shadowed, or indoors and to actively explore unknown environments while avoiding collisions and creating maps. This involves a number of challenges on all levels of helicopter design, perception, actuation, control, and navigation, which still have to be solved. The Swarm of Micro Flying Robots (SFLY) project was a European Union-funded project with the goal of creating a swarm of vision-controlled microaerial vehicles (MAVs) capable of autonomous navigation, three-dimensional (3-D) mapping, and optimal surveillance coverage in GPS-denied environments. The SFLY MAVs do not rely on remote control, radio beacons, or motion-capture systems but can fly all by themselves using only a single onboard camera and an inertial measurement unit (IMU). This article describes the technical challenges that have been faced and the results achieved from hardware design and embedded programming to vision-based navigation and mapping, with an overview of how all the modules work and how they have been integrated into the final system. Code, data sets, and videos are publicly available to the robotics community. Experimental results demonstrating three MAVs navigating autonomously in an unknown GPS-denied environment and performing 3-D mapping and optimal surveillance coverage are presented.
机译:自主微型直升机将很快在搜索和救援,环境监测,安全监视和检查等任务中发挥重要作用。如果进一步以小规模实现它们,则它们也可以在狭窄的室外和室内环境中使用,并且对人们的风险有限。但是,对于这样的操作,仅基于全球定位系统(GPS)信息进行导航是不够的。在城市或其他密集环境中的完全自主运行需要微型直升机在GPS信号经常被遮盖的低空或室内飞行,并积极探索未知环境,同时避免碰撞和创建地图。这在直升机设计,感知,致动,控制和导航的各个级别上都涉及许多挑战,这些挑战仍然必须解决。微型飞行机器人群(SFLY)项目是欧盟资助的项目,目的是创建能够自动导航,三维(3-D)映射和优化的视觉控制微型航空器(MAV)群体。 GPS拒绝环境中的监视范围。 SFLY MAV不依赖于遥控器,无线电信标或运动捕捉系统,而是可以仅使用单个机载摄像头和惯性测量单元(IMU)自行飞行。本文介绍了所面临的技术挑战以及从硬件设计和嵌入式编程到基于视觉的导航和制图所取得的成果,并概述了所有模块的工作方式以及如何将其集成到最终系统中。代码,数据集和视频可公开提供给机器人社区。实验结果证明了三个MAV在未知的GPS拒绝环境中自主导航并进行3-D映射和最佳监视覆盖范围。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号