首页> 外文期刊>IEEE Robotics and Automation Letters >Deep Learning Based Robotic Tool Detection and Articulation Estimation With Spatio-Temporal Layers
【24h】

Deep Learning Based Robotic Tool Detection and Articulation Estimation With Spatio-Temporal Layers

机译:基于深度学习的时空分层机器人工具检测和清晰度估计

获取原文
获取原文并翻译 | 示例

摘要

Surgical-tool joint detection from laparoscopic images is an important but challenging task in computer-assisted minimally invasive surgery. Illumination levels, variations in background and the different number of tools in the field of view, all pose difficulties to algorithm and model training. Yet, such challenges could be potentially tackled by exploiting the temporal information in laparoscopic videos to avoid per frame handling of the problem. In this letter, we propose a novel encoder-decoder architecture for surgical instrument joint detection and localization that uses three-dimensional convolutional layers to exploit spatio-temporal features from laparoscopic videos. When tested on benchmark and custom-built datasets, a median Dice similarity coefficient of 85.1% with an interquartile range of 4.6% highlights performance better than the state of the art based on single-frame processing. Alongside novelty of the network architecture, the idea for inclusion of temporal information appears to be particularly useful when processing images with unseen backgrounds during the training phase, which indicates that spatio-temporal features for joint detection help to generalize the solution.
机译:在计算机辅助的微创手术中,从腹腔镜图像检测手术工具的关节是一项重要但具有挑战性的任务。照明水平,背景变化以及视野中工具数量的不同,都给算法和模型训练带来了困难。然而,可以通过利用腹腔镜视频中的时间信息来避免对问题进行逐帧处理,从而有可能解决这些挑战。在这封信中,我们提出了一种用于外科手术器械关节检测和定位的新型编码器-解码器体系结构,该体系结构使用三维卷积层来利用腹腔镜视频的时空特征。当在基准数据集和定制数据集上进行测试时,Dice相似度系数的中位数为85.1%,四分位间距为4.6%,这比基于单帧处理的最新技术更好地突出了性能。除了网络体系结构的新颖性以外,在训练阶段处理背景不可见的图像时,包含时间信息的想法似乎特别有用,这表明用于联合检测的时空特征有助于推广解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号