首页> 外文期刊>IEEE Control Systems Letters >Self-Configuring Robot Path Planning With Obstacle Avoidance via Deep Reinforcement Learning
【24h】

Self-Configuring Robot Path Planning With Obstacle Avoidance via Deep Reinforcement Learning

机译:通过深度加强学习自动配置机器人路径规划,避免避免

获取原文
获取原文并翻译 | 示例

摘要

This letter proposes a hybrid control methodology to achieve full body collision avoidance in anthropomorphic robot manipulators. The proposal improves classical motion planning algorithms by introducing a Deep Reinforcement Learning (DRL) approach trained ad hoc for performing obstacle avoidance, while achieving a reaching task in the operative space. More specifically, a switching mechanism is enabled whenever a condition of proximity to the obstacles is met, thus conferring to the dual-mode architecture a self-configuring capability in order to cope with objects unexpectedly invading the workspace. The proposal has been finally tested relying on a realistic robot manipulator simulated in a V-REP environment.
机译:这封信提出了一种混合控制方法,以实现拟人机器人机械手的全身碰撞避免。该提议通过引入深度加强学习(DRL)接近训练的临时学习来改善经典运动规划算法,用于执行障碍物避免,同时在操作空间中实现达到的任务。更具体地,每当满足障碍物的接近条件时,能够使切换机构能够,因此赋予双模式架构是自配置能力,以便应对意外侵入工作空间的对象。该提案最终测试了依赖于在V-REP环境中模拟的现实机器人机器人。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号