首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >Microbiome Data Representation by Joint Nonnegative Matrix Factorization with Laplacian Regularization
【24h】

Microbiome Data Representation by Joint Nonnegative Matrix Factorization with Laplacian Regularization

机译:用Laplacian正则化联合非负矩阵分解进行微生物组数据表示

获取原文
获取原文并翻译 | 示例

摘要

Microbiome datasets are often comprised of different representations or views which provide complementary information to understand microbial communities, such as metabolic pathways, taxonomic assignments, and gene families. Data integration methods including approaches based on nonnegative matrix factorization (NMF) combine multi-view data to create a comprehensive view of a given microbiome study by integrating multi-view information. In this paper, we proposed a novel variant of NMF which called Laplacian regularized joint non-negative matrix factorization (LJ-NMF) for integrating functional and phylogenetic profiles from HMP. We compare the performance of this method to other variants of NMF. The experimental results indicate that the proposed method offers an efficient framework for microbiome data analysis.
机译:微生物组数据集通常由不同的表示形式或视图组成,这些视图或视图提供了补充信息以了解微生物群落,例如代谢途径,生物分类分配和基因家族。包括基于非负矩阵分解(NMF)的方法在内的数据集成方法结合了多视图数据,通过集成多视图信息来创建给定微生物组研究的综合视图。在本文中,我们提出了一种新的NMF变体,称为Laplacian正则化联合非负矩阵分解(LJ-NMF),用于整合HMP的功能和系统发育谱。我们将这种方法的性能与NMF的其他变体进行了比较。实验结果表明,该方法为微生物组数据分析提供了有效的框架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号