首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >Clustering and Integrating of Heterogeneous Microbiome Data by Joint Symmetric Nonnegative Matrix Factorization with Laplacian Regularization
【24h】

Clustering and Integrating of Heterogeneous Microbiome Data by Joint Symmetric Nonnegative Matrix Factorization with Laplacian Regularization

机译:通过Laplacian正规化联合对称非负面矩阵分解的聚类和集成异构微生物组数据

获取原文
获取原文并翻译 | 示例

摘要

Many datasets that exists in the real world are often comprised of different representations or views which provide complementary information to each other. To integrate information from multiple views, data integration approaches such as nonnegative matrix factorization (NMF) have been developed to combine multiple heterogeneous data simultaneously to obtain a comprehensive representation. In this paper, we proposed a novel variant of symmetric nonnegative matrix factorization (SNMF), called Laplacian regularization based joint symmetric nonnegative matrix factorization (LJ-SNMF) for clustering multi-view data. We conduct extensive experiments on several realistic datasets including Human Microbiome Project data. The experimental results show that the proposed method outperforms other variants of NMF, which suggests the potential application of LJ-SNMF in clustering multi-view datasets. Additionally, we also demonstrate the capability of LJ-SNMF in community finding.
机译:现实世界中存在的许多数据集通常由不同的表示或视图组成,这些表现形式或视图提供彼此的互补信息。为了从多视图集成信息,已经开发了数据集成方法,例如非环境矩阵分解(NMF)以同时组合多个异构数据以获得综合表示。在本文中,我们提出了一种对称非负矩阵分子(SNMF)的新型变体,称为Laplacian正则化的基于Laplacian正则化的关节对称非负矩阵分子(LJ-SNMF),用于聚类多视图数据。我们对几个现实数据集进行了广泛的实验,包括人类微生物组项目数据。实验结果表明,所提出的方法优于NMF的其他变体,这表明LJ-SNMF在聚类多视图数据集中的潜在应用。此外,我们还展示了LJ-SNMF在社区发现中的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号