首页> 外文期刊>Expert systems with applications >A novel temporal recommender system based on multiple transitions in user preference drift and topic review evolution
【24h】

A novel temporal recommender system based on multiple transitions in user preference drift and topic review evolution

机译:基于用户偏好漂移与主题审查演化的多转换的新型时间推荐系统

获取原文
获取原文并翻译 | 示例

摘要

Recommender systems are challenging research problems being exploited to suggest new items or services, such as books, music and movies, and even people, to users based on information about the user profile or the recommended items. To date, collaborative filtering (CF) has become one of the most widely used approaches for recommendations. However, traditional CF methods usually cannot track temporal dynamic user preferences and topic changes to make appropriate suggestions. Moreover, the performance of CF is limited in the case of sparse data. In this paper, we propose a novel temporal recommender system based on multiple transitions in user preference drift, called MTUPD, which employs a multitransition factor and a forgetting time function to investigate the evolution of user preferences. In addition, we consider addressing the rating sparsity issue by using text reviews. Understanding the reviews can facilitate the system grasping whether or not a user is attracted by the appearance of an item and whether the facet of an item's appearance contributes the most to its ratings. To achieve this, we apply a topic model that automatically classifies hidden topic factors in each time period and incorporate the transition method for both user preferences and relevant review topics. Experiments show that our proposed model outperforms the compared models on eight promising datasets for temporal recommender systems.
机译:推荐系统是根据有关用户配置文件或推荐项目的信息,提出挑战性的研究问题,建议使用书籍,音乐和电影,甚至是人们,例如书籍,音乐和电影,甚至是人们。迄今为止,协作过滤(CF)已成为推荐最广泛使用的方法之一。但是,传统的CF方法通常无法跟踪时间动态用户偏好和主题更改以进行适当的建议。此外,在稀疏数据的情况下,CF的性能受到限制。在本文中,我们提出了一种基于用户偏好漂移的多次转换的新型时间推荐系统,称为MTUPD,该MTUPD采用多种子质因子和遗忘时间函数来研究用户偏好的演变。此外,我们考虑通过使用文本评论来解决评级稀疏问题。了解评论可以促进系统掌握用户是否被物品的外观吸引以及物品的外表的刻面是否有助于其评级。为此,我们应用一个主题模型,它在每次时段中自动分类隐藏主题因子,并包含用户偏好和相关审查主题的转换方法。实验表明,我们所提出的模型在八个有希望的数据集中占临时推荐系统的八个有希望的数据集的比较模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号